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Abstract. We present the development and evaluation of MOM6-COBALT-NWA12 version 1.0, a 1/12° model of ocean dy-

namics and biogeochemistry in the Northwest Atlantic Ocean. This model is built using the new regional capabilities in the

MOM6 ocean model and is coupled with the COBALT biogeochemical model and SIS2 sea ice model. Our goal was to develop

a model to provide information to support living marine resource applications across management time horizons from seasons

to decades. To do this, we struck a balance between a broad, coastwide domain to simulate basin-scale variability and capture5

cross-boundary issues expected under climate change, high enough spatial resolution accurately simulate features like the Gulf

Stream separation and advection of water masses through finer-scale coastal features, and the computational economy required

to run the long simulations of multiple ensemble members that are needed to quantify prediction uncertainties and produce

actionable information. We assess whether MOM6-COBALT-NWA12 is capable of supporting the intended applications by

evaluating the model with three categories of metrics: basin-wide indicators of the model’s performance, indicators of coastal10

ecosystem variability and the regional ocean features that drive it, and model run times and computational efficiency. Overall,
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both the basin-wide and regional ecosystem-relevant indicators are simulated well by the model. Where notable model biases

and errors are present in both types of indicators, they are mainly consistent with the challenges of accurately simulating the

Gulf Stream separation, path, and variability: for example, the coastal ocean and shelf north of Cape Hatteras is too warm and

salty and has minor biogeochemical biases. During model development, we identified a few model parameters that exerted a15

notable influence on the model solution, including the horizontal viscosity, mixed layer restratification, and tidal self-attraction

and loading, which we discuss briefly. The computational performance of the model is adequate to support running numerous

long simulations, even with the inclusion of coupled biogeochemistry with 40 additional tracers. Overall, these results show

that this first version of a regional MOM6 model for the Northwest Atlantic Ocean is capable of efficiently and accurately sim-

ulating historical basin-wide and regional mean conditions and variability, laying the groundwork for future studies to analyze20

this variability in detail, develop and improve parameterizations and model components to better capture local ocean features,

and develop predictions and projections of future conditions to support living marine resource applications across time scales.

1 Introduction

Over the last few decades, the Northwest Atlantic Ocean has experienced prominent variability and sharp trends driven by

climate change and other anthropogenic factors, shifting currents, and basin-scale modes of climate variability. Sea surface25

temperatures in the Gulf of Maine and Scotian Shelf and Slope regions, located within the Northeast U.S. Large Marine

Ecosystem (LME), warmed faster than the vast majority of the global ocean in the last two decades (Pershing et al., 2015;

Seidov et al., 2021). In addition to being driven by a warming atmosphere caused by increasing greenhouse gas concentrations,

some of this warming occurred abruptly following shifts in the Gulf Stream path (Friedland et al., 2020a, b). The destabiliza-

tion point of the Gulf Stream has recently moved westward, closer to where it separates from the continental shelf (Andres,30

2016), and more frequent intrusions of warm and saline water onto the shelf (Gawarkiewicz et al., 2022) and eddy shedding

(Gangopadhyay et al., 2019, 2020) have been observed. Northward shifts of the Gulf Stream have cut off the cool, southward

Labrador Current and amplified warming in the region (Gonçalves Neto et al., 2021; Seidov et al., 2021). Sea surface temper-

atures have also been observed to be warming faster than the global average in the Gulf of Mexico (Wang et al., 2023) and

Caribbean Sea (Glenn et al., 2015). Rising temperatures and changes in ocean dynamics have contributed to a rapid increase35

in sea level and coastal flooding risk along most of the U.S. East Coast (Ezer and Atkinson, 2014).

Basin-scale modes of climate variability have also contributed to some of the recent variability in the Northwest Atlantic

Ocean, although the precise connections are sometimes tenuous. The Atlantic Multidecadal Variability (AMV) or Oscillation

(AMO) has recently been in a positive phase that is associated with basin-scale warming (Ting et al., 2009). Recent weakening

Atlantic Meridional Overturning Circulation has amplified warming along the U.S. East Coast and cooled the subpolar gyre40

(Caesar et al., 2018; Jackson et al., 2022). Fluctuations of the North Atlantic Oscillation (NAO) have been linked to changes

in the Labrador Current and Gulf Stream and downstream variability of temperature and salinity in the Northeast U.S. LME

between approximately 1 and 4 years later (Grodsky et al., 2017; Mountain, 2012; Xu et al., 2015). Remote climate teleconnec-

tions have also been identified, including a link between the Pacific Decadal Oscillation (PDO) and sea surface temperatures
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along the Northeast U.S. shelf (Chen and Kwon, 2018). El Niño events have been linked to anomalously fresh and cool condi-45

tions in the Gulf of Mexico and warm surface water in the tropical North Atlantic (Alexander and Scott, 2002; Gomez et al.,

2019).

The physical variations and trends described above have been accompanied by biogeochemical changes. The same accumu-

lation of carbon dioxide in the atmosphere contributing to ocean warming has acidified the ocean globally, though circulation

changes and warming water are delaying these impacts in some regions of the Northwest Atlantic (Salisbury and Jönsson,50

2018; Balch et al., 2022). The near disappearance of oxygenated water from the Labrador Current has increased hypoxia in the

Gulf of St. Lawrence and the surrounding shelf (Petrie and Yeats, 2000; Gilbert et al., 2005; Claret et al., 2018; Jutras et al.,

2020, 2023). These changes, combined with concomitant shifts in stratification, have shifted seasonal patterns of plankton pro-

ductivity and zooplankton assemblages (e.g., Balch et al., 2022; Friedland et al., 2023; Morse et al., 2017) and altered harmful

algal blooms (Clark et al., 2019; Heil and Muni-Morgan, 2021; Townsend et al., 2014). At the terrestrial interface, changes55

in land use and precipitation patterns have altered the delivery of nutrients and alkalinity to coastal waters (Rabalais et al.,

1996; Stets et al., 2014; Turner, 2021), shifting hypoxia and coastal acidification patterns (Cai et al., 2011; Gomez et al., 2021;

Rabalais et al., 2007).

The physical and biogeochemical changes in the Northwest Atlantic have been associated with pronounced shifts in the

distribution, phenology, and productivity of living marine resources (LMRs) and led to significant ecosystem, socio-economic,60

and public health consequences. In the Northeast U.S., most fish habitats have shifted to the north (Bell et al., 2015; Pinsky

and Fogarty, 2012; Lucey and Nye, 2010; Nye et al., 2009) or offshore and to deeper water (Kleisner et al., 2016; Mazur et al.,

2020; Nye et al., 2009) as the ocean has warmed, although Bell et al. (2015) found that not all shifts can be directly connected

to temperature. Many of these shifts have occurred across historical management, political, and regional ocean modeling

boundaries, emphasizing the need for a broad, coastwide perspective. Species distribution changes are likely to continue as65

climate change progresses, both in the Northwest Atlantic and globally, leading to geopolitical conflicts and management

challenges as species cross the boundaries of Exclusive Economic Zones (Pinsky et al., 2018) and fishers struggle to keep up

with the changes (Pinsky and Fogarty, 2012). Warming water in the Northwest Atlantic also increased cod mortality, resulting

in a collapse of the cod fishery (Pershing et al., 2015), and decreased the abundance of Calanus finmarchicus, leading to an

extinction-level threat to the North Atlantic Right Whale that feeds on it (Meyer-Gutbrod et al., 2021), and is likely to cause an70

expansion of HABs in the Gulf of St. Lawrence (Boivin-Rioux et al., 2022).

Shorter-term climate variability can also have substantial impacts, such as the link between a positive phase of the NAO

with lower fish catches and decreased fishing employment and wages in New England (Oremus, 2019). River discharge and

upwelling have produced frequent co-occurrences of hypoxia and harmful algal blooms (HABs) on the West Florida Shelf

(Turley et al., 2022). The compound stresses of marine heatwaves, ocean warming, and acidification pose an increasing threat75

to coral reefs in the Caribbean Sea and other parts of the subtropical North Atlantic, with effects further exacerbated by chronic

water quality challenges (Hoegh-Guldberg et al., 2007; Donovan et al., 2021; Leggat et al., 2019), and also threaten bivalves

in the coastal North Atlantic (Griffith and Gobler, 2017; Waldbusser et al., 2015).
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Numerous studies suggest that it is possible to anticipate some of the physical and biogeochemical changes in the Northwest

Atlantic through dynamical or statistical forecasts (e.g., Stock et al., 2015; Tommasi et al., 2017a; Chen et al., 2021). Further-80

more, a growing number of cases studies suggest that such predictions can improve marine resource management decisions and

contribute to resilient marine ecosystems and coastal communities (Tommasi et al., 2017c). In the Northwest Atlantic, Mills

et al. (2017) found that observed early spring temperatures anomalies in the Gulf of Maine could skillfully predict the start date

of high lobster landings, with a potential to moderate supply chain disruptions associated with anomalous ocean conditions

(Mills et al., 2013). Miller et al. (2016) and du Pontavice et al. (2022) showed that accounting for the effect of the Cold Pool (a85

seasonally formed cold water mass at the bottom of the Northeast U.S. continental shelf) on yellowtail flounder recruitment in

a stock assessment model can improve the predictive skill of recruitment and spawning stock biomass. At decadal timescales,

Tommasi et al. (2017a) found that skillful probabilistic of decadal-scale temperature anomalies was possible if viewed relative

to the 50 year baseline of trawl survey data, suggesting the potential to anticipate species range shifts on the decadal timescales

of capital investments by fishers (Tommasi et al., 2017b). While such outcomes are promising, the uptake of ocean predictions90

into LMR management has been slowed in part by limited availability of skillful high-resolution predictions across the range

of marine resource-relevant physical and biogeochemical variables with reliable estimates of prediction uncertainty.

Improved understanding of the drivers of historical trends and the capability to predict and project LMR-relevant future

changes in the Northwest Atlantic requires modeling systems that have both enough spatial resolution and complexity to

resolve physical and biogeochemical processes across scales and enough computational efficiency to run ensemble simulations95

that represent uncertainty about the future. In the Northwest Atlantic, past results suggest that ocean resolution on the order

of 1/10° or higher is required to accurately simulate features of the western boundary current, including the separation and

downstream path of the Gulf Stream (Chassignet and Marshall, 2008; Chassignet and Xu, 2017, 2021) and the dynamics of

Loop Current eddies (Oey et al., 2013), and smaller but ecologically critical local ocean features, such as the narrow Northeast

Channel in the Gulf of Maine that is a deep passageway for water from the slope (Saba et al., 2016) and the coastal hypoxia100

zone on the Louisiana-Texas Shelf (Fennel et al., 2013). Future projections of climate for the region from lower resolution

models that fail to simulate these features can differ substantially from higher resolution models that do (Liu et al., 2012;

Drenkard et al., 2021; Li et al., 2022). The computational cost of the resolution and complexity needed to simulate such

features conflicts with the desire to temper the computational demands of multiple ensemble members of lengthy simulations

required to project the range of ocean futures across management-relevant time horizons from seasons to centuries (Drenkard105

et al., 2021). For example, current-generation seasonal ocean prediction systems typically rely on low ocean resolution to

balance the computational demands of running decades of retrospective forecasts with multiple ensemble members, and these

systems have markedly lower forecast skill for the U.S. East Coast compared to other ocean and coastal regions (Stock et al.,

2015; Hervieux et al., 2017; Shin and Newman, 2021).

Regional ocean and ecosystem modeling systems can bring the benefits of high model grid resolution and complexity to an110

area of interest while maintaining the computational feasibility of running decadal to centennial scale simulations with many

ensemble members. Regional models also allow for region-specific optimization of model parameters and the inclusion of

regionally important processes that are too computationally costly or not represented in global model simulations. For example,
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current-generation global ocean models typically simulate tides and their effects only implicitly through parameterizations

(Holt et al., 2017), while a regional model that explicitly includes tides may be able to represent processes that are known115

to be important in the Northwest Atlantic, such as spring-neap variability of temperature and tidal pumping of nutrients in

Georges Bank (Bisagni and Sano, 1993; Hu et al., 2008) and eddy activity in the Gulf Stream region (Chassignet and Xu,

2021). For these reasons, regional ocean models will continue to be an important tool even as the resolution and complexity of

global models improves with increasing processor speed and supercomputing power (Drenkard et al., 2021). However, although

regional ocean models offer a number of advantages, they also present new challenges. The ocean boundary conditions in a120

regional model, for example, often exert a substantial influence over the interior solution (e.g., Ghantous et al., 2020), yet

specification of these boundary conditions is an ill-posed problem (Bennett and Kloeden, 1981; Marchesiello et al., 2001;

Oliger and Sundstrom, 1978). In addition, while regional domains temper the computational constraints of global simulations,

they do not eliminate them. A balance must still be struck between sufficient resolution and computational economy if ensemble

predictions spanning the range of potential ocean futures are to be generated.125

In this paper, we describe the development and evaluation of a baseline 1/12° regional ocean and biogeochemical model

for retrospective and predictive applications in the Northwest Atlantic Ocean: MOM6-COBALT-NWA12 v1.0 (Fig. 1a). This

model is derived from the Geophysical Fluid Dynamics Laboratory’s (GFDL’s) global ocean (MOM6), sea-ice (SIS2), and

ocean biogeochemistry (COBALT) models (Adcroft et al., 2019; Stock et al., 2020) and combines the features of the global

versions of these models, including computational efficiency and stability, with newly developed open boundary conditions and130

regional modeling capabilities to deliver a feature-rich yet computationally tractable regional ocean physical-ecosystem model.

The model is intended to support marine resource applications across management time horizons from weeks to seasons to

multiple decades and has a “coastwide” extent to address the prominent cross-boundary issues expected under climate change.

The model domain also extends considerably into the North Atlantic basin to smoothly connect basin-scale and coastal drivers

of ecosystem change.135

Confidence in the intended applications is linked to the model’s capacity to accurately simulate past observed responses

across these scales. Thus, in the sections that follow, we detail the development and configuration of the model components for

a historical simulation covering 1993 to 2019, evaluate the ability of the model to reproduce the historical means and variability

of metrics with ecosystem relevance, and discuss several notable sensitivities that we identified during model development.

Finally, we emphasize that the configuration herein is intended as an open development baseline supporting sustained model140

improvement. We thus conclude with a discussion of model strengths and limitations, with an eye toward future improvements,

with a long-term goal of supporting climate-informed decisions across LMR management and decision-making time horizons

from seasons to multiple decades.
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Figure 1. (a) Model domain and bathymetry. The color scale spacing is more detailed in the first 500 m to show shallow bathymetric features

on the shelves. (b) Northeast U.S. ecological production units (EPUs) used for some model evaluation metrics: Scotian Shelf (SS), Gulf of

Maine (GOM), Georges Bank (GB), and Mid-Atlantic Bight (MAB).

2 Methods

MOM6-COBALT-NWA12 is comprised of coupled model components for ocean physics, ocean biogeochemistry, and sea ice.145

In this section, we detail the development and configuration of the regional model components and describe the configuration

and evaluation of a reanalysis-forced simulation to determine whether the model is fit for purpose.

2.1 Physical ocean model configuration

A summary of the main configuration choices used in the MOM6 component of the model is presented in Table 1. Horizontally,

the model is based on an Arakawa C grid (Arakawa and Lamb, 1977) with 775x845 tracer points. The horizontal grid and150

bathymetry, shown in Figure 1a, are extracted from the larger North Atlantic basin model of Xu et al. (2010), with open

boundaries along the south, east, and north edges. Compared to a previous model based on the Regional Ocean Modeling

System that was developed by several coauthors of this study (Kang and Curchitser, 2013, 2015) and applied for climate and

ecosystem downscaling simulations (Alexander et al., 2020; Baumann et al., 2022; Clark et al., 2022), the NWA12 model

domain is expanded to include the critical Grand Banks region in the northeast, cover the full Caribbean Sea including the155

coasts of Puerto Rico and the Virgin Islands, and generally place the open boundaries farther from coastal regions of interest.

The resolution is 1/12° throughout most of the domain, and the zonal distance between grid points varies primarily with latitude

from approximately 9 km at the southern boundary to 5 km at the northern boundary. Vertically, the model uses a z∗ coordinate

(a height coordinate that is rescaled with the free surface; Adcroft and Campin, 2004) with 75 layers, identical to the z∗-only
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configuration of the global OM4 model in Adcroft et al. (2019, hereafter A19) but different from the hybrid z∗-isopycnal160

configurations also developed in A19 and employed in GFDL’s global climate and earth system models. The vertical resolution

is finest near the surface, where the layer thickness is 2 m, and the layer thickness gradually increases with depth to a maximum

thickness of 250 m above the deepest model depth of 6500 m. The shallowest bathymetry in the model is 10 m. The model

is integrated forward in time with a split explicit method (Hallberg, 1997; Hallberg and Adcroft, 2009). The baroclinic time

step is 600 seconds, and the time-varying barotropic time step is set to the largest integer fraction of the baroclinic time step165

that is less than 90% of the maximum stable time step. To increase computational efficiency, we used MOM6’s sub-cycled

time-step capabilities to update the thermodynamics and biogeochemistry (BGC) on a slower 1800 second time step, and the

atmospheric forcing data and external biogeochemical boundary data are updated hourly. The computational efficiency gained

through these choices will be discussed in the Results.

The ocean model subgrid-scale parameterizations are adapted from the 1/4° global model of A19, with updates and modifica-170

tions to account for the increased horizontal resolution and other differences in MOM6-NWA12. The planetary boundary layer

is parameterized using the same Reichl and Hallberg (2018) energetic planetary boundary layer scheme; however, the param-

eterization in NWA12 includes the updates by Reichl and Li (2019) to account for enhanced mixing by Langmuir turbulence.

Since our resolution resolves the first baroclinic deformation radius across the majority of the model domain, except on the

shelves (Hallberg, 2013), and thus captures a considerable fraction of the mesoscale dynamics, we did not include a mesoscale175

eddy mixing parameterization (nor did the 1/4° configuration in A19). Restratification of the mixed layer by submesoscale

eddies is parameterized using the scheme based on Fox-Kemper et al. (2011). As in A19, we found a strong sensitivity of the

simulated mixed layer depths to the submesoscale front length parameter in this scheme, and we increased the front length

from 500 m in A19 (which is on the lower end of values typically used; Bodner et al., 2023) to 1500 m. This increased front

length decreases restratification arising from the parameterization. Like A19, the horizontal biharmonic viscosity is formulated180

as the maximum of either a Smagorinsky viscosity or a fixed viscosity of the form u4∆3
x where ∆x is the local grid spacing

(Griffies and Hallberg, 2000). NWA12 uses u4 = 1 cm s−1, the same as A19, with a Smagorinsky coefficient of 0.015, which

is reduced from 0.06 in A19. Mixing by shear-driven turbulence is modeled using the Jackson et al. (2008) parameterization as

in A19.

There are a few other differences from A19. Most notably, MOM6-COBALT-NWA12 includes explicit tidal dynamics forced185

by both the boundary and the astronomical tidal potential. We thus removed the unresolved tidal velocity from the formulation

of the bottom drag, and we did not include parameterized mixing or the additional tracer diffusivity that A19 used to account

for internal tides. Background vertical viscosity was reduced to its molecular value. We also neglected the parameterized

conversion of energy dissipated in the bottom boundary layer to diapycnal mixing by reducing the parameter for the efficiency

of this process from 0.20 in A19 to 0.0. When this parameterization was enabled, the model tended to produce exaggerated190

mixing at the bottom of many coastal areas, which prevented the development of realistic bottom hypoxia in the coastal Gulf of

Mexico. The efficiency is considered poorly constrained (generally within a range of 0.0–0.2) and tunable (Gregg et al., 2018;

Legg et al., 2006), although eliminating this parameterization of physical mixing may partially compensate for numerically

induced mixing in the z∗ coordinate model (Griffies et al., 2000).
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Table 1. Major parameters and associated values used in the physical ocean (MOM6) component of the model and relevant references

describing the parameter or the choice of value.

Parameter Value Reference

Vertical coordinate 75 layer z∗ Adcroft et al. (2019)

Baroclinic time step 600 s

Thermodynamics and BGC time step 1800 s

Planetary boundary layer parameterization ePBL Reichl and Hallberg (2018)

Submesoscale eddy front length 1500 m Fox-Kemper et al. (2011); Bodner et al. (2023)

Biharmonic viscosity Maximum of Smagorinsky and

resolution-dependent viscosities

Griffies and Hallberg (2000)

Smagorinsky coefficient 0.015

Resolution-dependent 0.01∆3
x m4 s−1 Adcroft et al. (2019)

Bottom boundary layer mixing efficiency 0.0

Background kinematic viscosity 1.0 ×10−6 m2 s−1

Background diapycnal diffusivity 1.0 ×10−6 m2 s−1

Boundary conditions

Sea level and barotropic velocity Flather scheme Flather (1976)

Baroclinic velocity Radiation and nudging scheme

(3 day inflow, 360 day outflow

timescales)

Marchesiello et al. (2001); Orlanski (1976)

Tracers Reservoirs with 9 km length scales

Tidal SAL coefficient 0.01 Irazoqui Apecechea et al. (2017); Stepanov and

Hughes (2004)

Opacity scheme 3-band with chlorophyll Manizza (2005)

As in A19, MOM6-COBALT-NWA12 simulates sea ice and its interaction with the ocean using a coupled sea ice model,195

Sea Ice Simulator version 2 (SIS2). We refer the reader to A19 for a description of the SIS2 model and configuration; the

configuration used in MOM6-COBALT-NWA12 is identical except we have reduced the ice dynamics time step to 600 seconds

to match the ocean baroclinic time step. SIS2 does not yet support open boundary conditions for sea ice.

2.1.1 Physical ocean model forcing

Boundary conditions for combined tidal and subtidal sea level and barotropic velocity are set using a Flather (1976) radiation200

boundary condition. Baroclinic flow at the boundary is set using the radiation scheme of Orlanski (1976) combined with

nudging towards external forcing data following Marchesiello et al. (2001). Boundary normal and tangential velocities are
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strongly nudged towards the forcing data with a 3 day time scale for flow entering the model and weakly nudged with a 360

day timescale for outgoing flow. Temperature and salinity boundary conditions are set using a reservoir scheme that gradually

adjusts boundary data towards interior values on outflow and exterior values on inflow, which allows the tracer boundary205

conditions to retain a memory of the properties of flow that exits and reenters the domain. The reservoir length scale is set to

9 km for both inflow and outflow, which is approximately equal to a 1–10 day time scale for a 10–1 cm s−1 flow and allows

the boundary to adjust to changes on weather time scales. The development of and sensitivity to this novel reservoir scheme

are being addressed in a separate publication. It is important to note that for all prognostic model variables there is no nudging

to observed data within the model domain—the model does not use a “sponge layer” near the boundary or apply restoring of210

properties like surface salinity. Attaining a reliable solution without using these features was a deliberate emphasis of model

development and facilitates use of the model in downscaled climate projections and other scenarios where accurate internal

data to restore to may not be available.

In the reanalysis-driven hindcast simulation presented in this paper, external boundary data for temperature, salinity, and

subtidal velocity and sea level were specified using daily averages from the GLORYS12 v1 ocean reanalysis (Lellouche et al.,215

2021). This reanalysis provides high resolution (1/12°) daily data, and has been found to be one of the better performing

ocean reanalyses in coastal areas including the Northeast U.S. (Castillo-Trujillo et al., 2022) and California Current System

(Amaya et al., 2023). Tidal variations in sea level and velocity were superimposed on the subtidal boundary data using tidal

harmonics from the TPXO9 v1 dataset (Egbert and Erofeeva, 2002). Four semidiurnal constituents (M2, S2, N2, and K2), four

diurnal constituents (K1, O1, P1, Q1) and two long-period constituents (Mm and Mf) were included in the boundary forcing.220

Modulation by the 18.6-year nodal cycle was included by calculating correction factors for the amplitude and phase of each

constituent at yearly intervals. Astronomical tidal forcing from the same ten constituents was also included throughout the

domain as a body force in the momentum equations. The effects of self-attraction and loading were also included using the

scalar approximation (Accad and Pekeris, 1978) with a coefficient of 0.01.

Freshwater discharge from rivers was sourced from the gridded daily GloFAS reanalysis version 3.1 (Alfieri et al., 2020).225

River discharge was mapped to the MOM6 grid by using the local drainage direction map to identify outlet points adjacent to

the coast, and any chains of outlet points adjacent to these coastal outlets, and mapping the streamflow at these outlet points

to the nearest MOM6 coastal ocean grid cell. River discharge was added at the surface at the discharge grid cells, and an

additional source of turbulent kinetic energy was added at discharge points to vertically mix the water column up to 5 m deep.

We found that the GloFAS product overestimated the streamflow in the Mississippi River, so we applied a bias correction using230

a linear regression between the GloFAS Mississippi River discharge and the USGS gauge at Belle Chasse, LA. We evenly

divided this adjusted flow into two points that discharged on the western side of the river delta and one point on the eastern

side, which is roughly consistent with the real partitioning of discharge from the delta (Dagg and Breed, 2003; Dinnel and

Wiseman, 1986). River discharge from the Atchafalaya River did not appear to need adjustment. We also manually adjusted

the location of discharge from the Susquehanna River to ensure that it entered the model at the correct location in Chesapeake235

Bay.
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Momentum, heat, freshwater, and radiation fluxes between the ocean and atmosphere were calculated using the hourly ERA5

atmospheric reanalysis (Hersbach et al., 2020) and the Large and Yeager (2004) bulk algorithm, with the inclusion of the

Large and Yeager (2004) adjustment for the temperature and humidity reference height of 2 m in the ERA5 data. Chlorophyll

predicted by the coupled COBALT biogeochemical component of the model, presented next, was used to specify the vertical240

profile of the absorption of shortwave radiation following the Manizza (2005) scheme.

2.2 Biogeochemical model configuration

The MOM6 physical ocean component is coupled with the Carbon, Ocean Biogeochemistry and Lower Trophics (COBALT)

biogeochemical model (Stock et al., 2014, 2020), with a number of enhancements intended to improve the robustness of the

biogeochemical model across the spectrum of coastal to open ocean environments included in the NWA12 domain. For the245

plankton food web, we drew from Van Oostende et al. (2018) to add a fourth phytoplankton group to better represent spring

bloom diatoms that can be particularly prominent in high productivity coastal regions. The phytoplankton parameters enlisted

in this run are summarized in Table A1. Direct phytoplankton sinking was added to complement phytoplankton aggregation

losses under poor growth conditions and better capture the absence of large diatoms in the subtropical gyres. Upon reaching

the bottom, these slow sinking particles were assumed to settle into a nepheloid layer and be available for resuspension if the250

bottom was shallower than twice the depth of the actively mixed layer, and were otherwise remineralized. Other aspects of

particle sinking and remineralization are as described in Stock et al. (2020).

Phytoplankton in very deep mixed layers (those exceeding 3 e-folding depths) were assumed to photoacclimate to mean

light levels over the first 3 e-folding depths, while those in shallow mixed layers were assumed to photoacclimate to mean light

levels over the mixed layer. This is consistent with results of optimality models suggesting that phytoplankton in deep mixed255

layers must adapt to elevated light conditions closer to the surface (Talmy et al., 2013), and was found to improve the model’s

representation of offshore bloom timing and magnitude in the NWA12 domain.

Increased flexibility was added to the zooplankton grazing kernels to better represent the feeding flexibility of the diverse

groups included within COBALT’s three zooplankton size classes (Fuchs and Franks, 2010; Hansen et al., 1994). The prey

availability is summarized in Table A2. In accordance with Van Oostende et al. (2018), grazing of the largest phytoplankton260

size class was limited primarily to the largest zooplankton (i.e., large-bodied copepods and krill), with only weak controls by

medium-sized zooplankton. More flexibility was allotted across the smaller size classes.

To better represent light limitation in nearshore waters and/or waters under strong riverine influence, we enhanced the light

attenuation in waters with salinity < 30 PSU or depth < 30 m to levels consistent with case 2 waters (Jerlov, 1976). This was

achieved by augmenting the background light attenuation in the Manizza (2005) scheme by 0.05 m−1. This yields blue/green265

diffuse attenuation rates of about 0.1–0.3 m−1 (transmittance of 90% to 75% per meter) for typical coastal chlorophyll levels

between 0.5 and 5 mg chl m−3, respectively. This augmentation to the light attenuation is currently only active for photosyn-

thetic calculations in the biogeochemical model, and is acknowledged to be a simple first step toward more comprehensive

representations of complex coastal ocean optics (e.g., Skákala et al., 2020). Its inclusion reflects the potential importance of

the depth of the euphotic zone for hypoxia in the Gulf of Mexico (Schaeffer et al., 2011).270
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To allow COBALT to better integrate riverine nutrient inputs that have nitrogen to phosphorus ratios (N:P) that often strongly

depart from characteristic oceanic (i.e., Redfield) values, we augmented the phytoplankton N:P ratios for small, medium and

large phytoplankton to include the potential for reduced P usage in low P environments (i.e., “P frugality”). This was param-

eterized with the emergent negative relationship between phytoplankton N:P and P concentration identified by Galbraith and

Martiny (2015), enabling phytoplankton to achieve a maximum N:P ratio of 31 (nearly twice the canonical Redfield ratio)275

in low P environments. Minimum N:P ratios were restricted to characteristic values for each size class (Finkel et al., 2010)

because the highest P regions in the NWA12 are generally associated with high N:P riverine inputs, which observations (e.g.,

Sterner and Elser, 2003; Hall et al., 2005) suggest would prevent the lower N:P ratios predicted by the Galbraith and Martiny

(2015) relationship under phosphate rich conditions. The net effect of this simple phytoplankton N:P parameterization is thus

to allow phytoplankton to better utilize excess N under low phosphate conditions, while reverting to characteristic N:P ratios280

under moderate and high phosphate levels. The addition of the fourth phytoplankton group and dynamic phytoplankton N:P

ratios increases the number of prognostic state variables in COBALT from 33 in its standard formulation, to 40.

2.2.1 Biogeochemical model forcing

Open boundary data for biogeochemical tracers were set using several sources. Boundary data for NO3, O2, PO4, and SiO4

were obtained from climatologies in the World Ocean Atlas (WOA) 2018 dataset (Boyer et al., 2019). In the upper 800 m, we285

used seasonal climatologies from the WOA as boundary conditions, while below 800 m (where only long-term mean values

are available) we used the long-term mean data. Boundary data for alkalinity (ALK) and dissolved inorganic carbon (DIC)

were estimated from GLORYS monthly average temperature and salinity by applying the methods developed by Carter et al.

(2021). We used the multiple linear regression version of the algorithm from Carter et al. (2021) that predicts ALK and DIC

from potential temperature and salinity using a multiple linear regression, with an adjustment for the year. Carter et al. (2021)290

fit parameters for the regression over a 5° x 5° x 33 depth grid, and these coefficients were then interpolated to the NWA12

model boundaries and used to predict time-varying ALK and DIC from the interpolated GLORYS12 temperature and salinity.

Boundary data for the remaining tracers, which generally have shorter turnover times, were set to 1993–2014 averages from

the global COBALT simulation of Stock et al. (2014).

Biogeochemical tracers used the same tracer reservoir boundary condition scheme as temperature and salinity. However,295

as the external biogeochemical fields are not as well constrained by data as temperature and salinity and biogeochemical

simulations are sensitive to even small amounts of spurious mixing or circulation near the boundary, we increased the inflow

length scale to 300 km. This succeeded in imposing the desired lower frequency biogeochemical trends at monthly and longer

time scales, while approaching a no-gradient condition for dynamics operating on daily timescales within the euphotic zone,

thus dampening spurious biogeochemical signals. The impacts from such signals are further dampened by the large distance300

between the domain boundaries and the coastal regions of primary interest.

The primary source of river nutrient, carbon, and alkalinity data was the River Chemistry for the United States Coast

(RC4USCoast) dataset compiled by Gomez et al. (2022). This product relies mainly on river chemistry observations from

the United States Geological Survey (USGS) sub-selected for inputs to coastal waters and processed into monthly climatolo-
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gies and, where possible, time series. The simulations herein used the 1990–2022 climatology to constrain dissolved organic305

carbon (DIC), alkalinity (ALK), nitrate (NO3), ammonia (NH4), phosphate (PO4), the dissolved and particulate organic phases

of N and P, oxygen (O2), and silicate (SiO4, derived from data on silicon dioxide SiO2). 50% of particulate phosphorus was as-

sumed to be mobilized in estuaries, with the remainder buried (Froelich, 1988; Sutula et al., 2004). Dissolved organic nitrogen

and phosphorus inputs were fractionated to labile (40%), semi-labile (30%) and semi-refractory (30%) pools to be consistent

with the range of bioavailability in Wiegner et al. (2006).310

For Canadian waters, the river forcing described in Lavoie et al. (2021) was enlisted. This data included DIC, ALK, and

nitrate. Other nutrient inputs were estimated by applying the ratio between dissolved inorganic nitrogen and PO4, dissolved

and particulate N and P from the semi-empirical GlobalNEWS2 algorithm (Mayorga et al., 2010) to the Lavoie et al. (2021) ni-

trate estimates. GlobalNEWS2 estimates were enlisted directly to constrain river inputs in Mexico, Central and South America.

Oxygen for Canadian and Mexican/Central American/South American rivers was specified to be in equilibrium with climato-315

logical ocean temperatures at the river mouths. Following de Baar and de Jong (2001), iron concentrations in all rivers were

specified to be 70 nanomolar.

RC4USCoast and other nutrient concentrations were mapped onto GloFAS freshwater inputs (See Section 2.1) using a

nearest neighbor algorithm with larger rivers superseding smaller ones. Nutrient loads vary with river flows and month, but

more subtle variations/trends in nutrient concentrations over the 1993–2019 model simulation period (e.g., increasing alkalinity320

in the Mississippi-Atchafalaya River System; Gomez et al., 2021) are omitted for the baseline configuration presented herein.

For the atmosphere, time- and latitude-varying atmospheric CO2 concentration was set using the monthly historical time

series from Meinshausen et al. (2017). We extended the historical CO2 time series, which ends in 2014, using the atmospheric

CO2 concentration projected under the SSP2-4.5 emissions scenario (Meinshausen et al., 2020). Wet and dry deposition of

NO3, NH4, and lithogenic dust were specified using a 1993–2014 monthly climatology from the historical simulation of325

GFDL’s ESM4.1 earth system model (Dunne et al., 2020). As in ESM4.1 (Stock et al., 2020), iron deposition was approxi-

mated by assuming that dust is composed of 3.5% iron and iron solubility varies inversely with the surface dust concentration

following Baker and Croot (2010). Dry deposition of phosphorus was also approximated from the climatology of dry dust

deposition by assuming that dust consists of 563 ppm phosphorus of which 22% is bioavailable. These values were obtained

from the global ocean averages of Herbert et al. (2018).330

2.3 Model spinup and hindcast simulation

The primary model simulation evaluated in this paper is a hindcast simulation that was run from years 1993 to 2019 using the

configuration and forcing described in previous sections. This simulation was initialized from rest on January 1, 1993 using

GLORYS12 temperature and salinity for that date as the initial conditions. For the biogeochemical tracers, we ran a 10-year

spinup beforehand to allow the biogeochemistry to adjust from the coarse climatological initial conditions, at least near the335

surface. This spinup simulation also started from rest in 1993 using initial conditions from the GLORYS12 reanalysis and

the same biogeochemical data sources used to create the boundary conditions. We ran this simulation for 10 years using the

forcings described previously. Carbon dioxide forcing was applied differently during this spinup simulation, however, to obtain
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a model state closer to equilibrium with 1993 conditions: atmospheric CO2 was applied by repeating the 1993 annual cycle

from the Meinshausen et al. (2017) forcing dataset, and open boundary condition ALK and DIC were calculated using the340

Carter et al. (2021) algorithm with the time fixed to 1993. We then started the main hindcast simulation on January 1, 1993

using the biogeochemical tracer fields at the end of the spinup simulation as initial conditions for the main simulation.

2.4 Model evaluation

To evaluate the utility of the NWA12 model for marine resource applications, we focused on three aspects of the model

performance. First, we considered general, basin-wide indicators of the model simulation fidelity, such as climatologies of345

surface temperature and macronutrients, and drivers of large-scale variability, such as the mean and variability of the position

of the Gulf Stream. Second, we evaluated a high priority subset of features that are essential to simulate accurately in order

to reproduce regional ecosystem variability, such as the temperature and salinity of water entering the Gulf of Maine at depth

through the Northeast Channel, and fine-scale ecosystem responses to climate variability, such as hypoxia on the Louisiana-

Texas Shelf. For these two sets of model-data comparisons, a summary of the metrics considered and the datasets used as350

references is provided in Table 2. Third, we tested the computational cost and scaling of the model to assess the feasibility of

using the model to run the long hindcasts and multi-member forecasts and projections needed to inform living marine resource

management and other applications to coastal ocean decision-making.

Most physical ocean metrics were evaluated using the GLORYS12 reanalysis, which was also used as the model open

boundary conditions and reliably simulates regional hydrography (Castillo-Trujillo et al., 2022), as a reference dataset. We355

also included results from one or more in-situ or remote sensing observational datasets as an additional comparison where

available. For most model-data comparisons, we calculated four quantitative skill metrics: bias (mean difference between model

and data), root mean square error (RMSE), Pearson correlation coefficient (corr., or r), and median absolute error (MedAE,

expressed as Median(|modeli− datai|), which is robust against outlying errors). For chlorophyll, we used the Spearman rank

correlation instead of the Pearson correlation due to the nonlinearity of the data. All of these metrics were calculated using the360

xskillscore Python module (DOI:10.5281/zenodo.5173153). For spatial comparisons where the observed product had a similar

resolution as the NWA12 model grid (finer than 1/4°), the observations were bilinearly interpolated onto the model grid. One

exception is chlorophyll-a, which has fine resolution in the observed product (4 km) and high spatial variability and thus was

conservatively interpolated onto the NWA12 model grid. For spatial comparisons where the observed product had a resolution

of 1/4° or coarser, the model data was conservatively interpolated onto the observed product grid. All comparisons except for365

the tidal sea surface height evaluation used monthly mean model output or longer-period averages calculated from monthly or

daily means, so no processing was applied to remove tides from the model output.
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Table 2. Primary diagnostics used to evaluate the model, the time sampling of these diagnostics, and datasets used as references for evaluation

of model performance.

Metric Time sampling Reference datasets

Sea surface temperature Annual and seasonal mean climatology GLORYS12

OISST v2

Sea surface salinity

Annual mean climatology GLORYS12

NCEI Regional climatologies

Mixed layer depth Winter (Jan–Mar) mean climatology de Boyer Montégut (2004)

Gulf Stream position

15 °C isotherm at 200 m Annual mean climatology GLORYS12

Mean latitude of maximum SSH variability Annual mean climatology Satellite altimetry

SSH-based index of Gulf Stream position Monthly time series

25-month rolling average

Satellite altimetry

Mean sea level Annual mean GLORYS12

Gridded satellite altimetry

M2 and K1 tidal amplitudes and phases Estimated from hourly model data TPXO9

Surface nutrients Seasonal mean climatology World Ocean Atlas 2018

Sea surface chlorophyll Seasonal mean climatology OC-CCI v6.0

Mesozooplankton Biomass Seasonal mean climatology COPEPOD

Surface pCO2 Annual mean climatology

Seasonal amplitude

Bakker et al. (2016)

Landschützer et al. (2020)

Surface ALK, DIC, Ωar 2004–2018 mean Jiang et al. (2022)

Sea surface temperature Trend of annual mean 2005–2019 GLORYS12

OISST v2

Bottom temperature in NE US EPUs Annual average anomalies NOAA Fisheries surveys

GLORYS12

Deep water in Northeast Channel Monthly mean time series CTDs

Buoy N01

GLORYS12

Winter sea ice Monthly climatology of concentration

Time series of extent

Cavalieri et al. (1996)

Mid-Atlantic Bight Cold Pool June-September mean du Pontavice et al. (2022)

Gulf of Mexico chlorophyll anomalies Composite means of ENSO phases OC-CCI

LA-TX shelf hypoxia Seasonal climatology and July time series Matli et al. (2020)
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2.4.1 Basin-wide indicators of model performance and drivers of variability

Model mean sea surface temperature (SST) was compared with the means of the 1/4° OISST v2 product derived from remote

sensing and in situ observations (Reynolds et al., 2007) and the GLORYS12 reanalysis. We compared the difference between370

the 1993–2019 model mean with the same time period from the two reference datasets. We also evaluated model biases in the

seasonal SST climatology by comparing this metric to the OISST product.

We compared the 1993-2019 mean sea surface salinity (SSS) from the model with the corresponding mean SSS from the

GLORYS12 reanalysis and from the NOAA NCEI regional ocean climatologies, which are interpolated and quality-controlled

climatologies at 1/10° resolution derived from the World Ocean Database (Seidov et al., 2018, 2019). For the NCEI regional375

climatologies, which are provided as decadal averages with the most recent decade extended to 2017, we used the weighted

average of the 1995–2004 and 2005–2017 means.

MOM6 computed the model mixed layer depth (MLD) online using the common definition of the mixed layer bottom as

the depth where the potential density difference relative to the surface first reaches 0.03 kg m−3 (Griffies et al., 2016). We

compared the winter (January, February, March) mean MLD with the long-term MLD climatology derived from profiles in the380

World Ocean Database and Argo datasets by de Boyer Montégut (2004). We used the November 2022 update to this dataset

(DOI:10.17882/91774). The MLD in this dataset is also defined as the depth where the density is 0.03 kg m−3 greater than the

surface density; however, it uses 10 m depth as the surface, whereas MOM6 uses the surface layer (between 0–2 m here). This

will introduce a small bias to the comparison.

The mean and variability of the Gulf Stream position was calculated using two different metrics, one using temperature385

and the other using sea surface height (SSH). First, we calculated the position of the north wall of the Gulf Stream based

on the position of the 15 °C isotherm at 200 m depth in the 1993–2019 mean temperature (Chi et al., 2019; Fuglister and

Voorhis, 1965). This metric was also calculated using the GLORYS12 reanalysis for comparison. Second, along meridional

lines between 72 °W and 52 °W spaced 1° longitude apart, we calculated the latitudes where the variance of monthly mean

sea surface height anomaly (the difference between the monthly mean SSH and the 1993–2019 calendar month mean) was390

highest. These latitude/longitude points form the mean position of the Gulf Stream. An index representing north/south shifts

of the Gulf Stream over time was calculated by averaging the sea level anomaly at the mean Gulf Stream position points

and then dividing it by the standard deviation of the average sea level anomaly. Although short term eddy variability will

introduce some noise to this metric, longer-term means generally represent broad, coherent shifts in the Gulf Stream position,

and thus we also calculated a 25-month centered rolling average of the index. These metrics for SSH-based mean position and395

variability are adapted from Pérez-Hernández and Joyce (2014) and are the same as those used in the NOAA Fisheries State

of the Ecosystem (SOE) Report for the Mid-Atlantic (NOAA Fisheries, 2022a). This metric was also calculated using monthly

mean absolute dynamic topography from the gridded satellite altimetry dataset provided by the Copernicus Marine Service

(DOI:10.48670/moi-00148). We also compared long-term mean sea surface height in the broader western boundary current

region using both the GLORYS12 and satellite altimetry datasets.400
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The model simulation of tidal elevations was assessed by calculating the amplitudes and phases of the largest semidiurnal

(M2) and diurnal (K1) constituents for each model grid point from hourly model output. Due to the computational time and

storage costs of saving hourly model output, this assessment was only done for one year of model simulation started in 1993

with the same initial conditions as the main hindcast. This simulation did not include the COBALT biogeochemical component

to reduce the computational cost and given the expected negligible feedback of biogeochemistry on tides. Modulation of405

the tides by the 18.6 year nodal cycle was also disabled for this run so that the modulation did not need to be re-estimated

and corrected for when calculating tidal constituents properties from the model output. The amplitudes and phases of the

M2 and K1 constituents were calculated at every grid point in the model using the UTide Python package (Codiga (2011);

https://github.com/wesleybowman/UTide) and were compared with corresponding amplitudes and phases from the TPXO tide

data used as tidal boundary conditions in the NWA12 model.410

Model predicted surface chlorophyll-a (chl-a) was compared with satellite remote sensing estimates from the Ocean Colour

Climate Change Initiative (OC-CCI) dataset version 6.0 (Sathyendranath et al., 2019), which merges estimates of ocean surface

chl-a from multiple satellites and algorithms into one consistent product. We compared the model and OC-CCI seasonal

climatologies calculated over 1998–2019.

The model seasonal mean climatology of mesozooplankton biomass integrated over 0–200 m was compared with obser-415

vations from the COPEPOD dataset (Moriarty and O’Brien, 2013). Mesozooplankton in the COBALT model consists of the

medium (200-2000 µm Equivalent Spherical Diameter) and large (2000-20000 µm ESD) size classes. The COPEPOD dataset

reports biomass adjusted to be consistent with measurements from a 333 µm mesh (Moriarty and O’Brien, 2013), which is

likely to exclude a significant fraction of sizes on both the small and large end of COBALT’s zooplankton size range (Skjoldal

et al., 2013). Shropshire et al. (2020), for example, found that mesozooplankton biomass in 333 µm mesh nets in the Gulf of420

Mexico was approximately half (0.5093) that measured in 202 µm mesh nets. This is similar to the 0.6195 adjustment found

by O’Brien (2005), and Skjoldal et al. (2013) further suggest that an even smaller 150 µm mesh net would be better in coastal

systems. Given these uncertainties, we multiplied COPEPOD biomass estimates by 2 before comparing with COBALT. We

recognize the possibility that escape by larger zooplankton size classes and inefficient net sampling of gelatinous zooplankton

likely make the adjusted observations a lower bound for mesozooplankton biomass across the size range covered by COBALT.425

Model seasonal surface nutrient climatologies were assessed by comparing modeled surface NO3 and PO4 with climatolo-

gies from the World Ocean Atlas (WOA) 2018 (Boyer et al., 2019).

Model surface pCO2 was compared with observations derived from the Surface Ocean CO2 Atlas database version 2021

(SOCATv2021, Bakker et al. (2016)) during 1993–2019 and against a pCO2 data-product generated from SOCAT observations

by a two-step neural network interpolation (data-product, Landschützer et al. (2020)) during 1998–2015. We evaluated the430

model and observed seasonal variability of pCO2 which is expressed as the root mean square of the monthly pCO2 anomalies

(RMS, in µatm). Due to the discontinuous pCO2 observations in time in the SOCAT database, the evaluation of the model in

reproducing the seasonal pCO2 variability was only performed against the data-product.

Model surface total alkalinity, DIC, and aragonite saturation state were compared with long-term observed means from the

dataset of Jiang et al. (2022). This dataset applies an objective analysis technique to observations from the Coastal Ocean435
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Data Analysis Product in North America (CODAP-NA; Jiang et al., 2021) and Global Ocean Data Analysis Product version

2 (GLODAP v2; Lauvset et al., 2021) to produce a 1° gridded long-term mean for each variable. The model means were

calculated over years 2004–2018 to match the time period of the observations from CODAP-NA.

2.4.2 Relevant regional features and ecosystem responses

Since the early 2000s, the ocean along the Northeast United States has warmed faster than the vast majority of all other ocean440

regions (Pershing et al., 2015; Seidov et al., 2021). We assessed the ability of the model to reproduce this warming and other

temperature trends throughout the model domain by calculating the 2005–2019 annual mean sea surface temperature trend at

each point in the model and comparing with trends from the GLORYS12 and OISST datasets used in Section 2.4.1. 2005 was

chosen as the start date of the trend analysis to match the date chosen by Seidov et al. (2021), and is one year later than the

date chosen by Pershing et al. (2015).445

Next, we assessed three metrics related to bottom temperature on the Northeast U.S. Continental Shelf that are used to inform

management in the NOAA Fisheries State of the Ecosystem (SOE) Reports for New England (NOAA Fisheries, 2022b) and

the Mid-Atlantic (NOAA Fisheries, 2022a): (1) bottom temperatures averaged within four ecological production units (EPUs),

(2) deep temperature and salinity with the Gulf of Maine Northeast Channel and associated water masses, and (3) bottom

temperature within the Mid-Atlantic Bight cold pool region. Data for the observed metrics were obtained directly from the450

SOE reports, and metrics from the model data were calculated using nearly identical methods.

First, New England and Mid-Atlantic fisheries management EPUs are defined for the southwestern Scotian Shelf, Gulf of

Maine, Georges Bank, and the Mid-Atlantic Bight (Fig. 1b). Within each EPU, area-weighted model average bottom temper-

atures were computed for all model tracer points falling within each EPU, and anomalies were calculated by subtracting the

1993–2010 monthly climatology for each EPU. For comparison, EPU-average bottom temperature anomalies were extracted455

from the GLORYS12 reanalysis using identical methods. The model bottom temperature anomalies were also compared with

observations obtained directly from data used in the SOE reports. These observed anomalies were calculated using slightly

different methods. Observed bottom temperatures were derived from CTD profiles collected during routine surveys that were

performed at least twice per year (most often in the late spring and autumn months). The annual harmonic method described

in Mountain (1991), in which the climatology is a simple sine wave with a period of one year, was used to calculate these460

anomalies because it works well at extracting anomalies from this sparse and irregular data. Finally, for all three datasets, we

calculated annual averages of the monthly anomalies.

Second, we assessed the model’s ability to simulate water masses entering the narrow, deep Northeast Channel in the Gulf

of Maine that drive ecosystem-relevant temperature and salinity variability within the Gulf. Using methods from Mountain

(2012) and the NOAA Fisheries State of the Ecosystem Reports for New England (NOAA Fisheries, 2022b), we evaluated465

the model monthly mean potential temperature and salinity averaged in the Channel between 42.2–42.6 °N, 66.0–66.8 °W and

150–200 m depth. Temperature and salinity in the channel is influenced by mixing between relatively cool, fresh Scotian Shelf

Water (defined by Mountain (2012) as T=2 °C, S=32), moderately warm, salty Labrador Slope Water (T=6 °C, S=34.6), and

very warm, salty Warm Slope Water (T=12 °C, S=35.4). Recent observations have shown a significant increase in Warm Slope
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Water and a corresponding decrease in Labrador Slope Water (Balch et al., 2022; NOAA Fisheries, 2022b), so we used annual470

mean potential temperature and salinity to calculate time series of the composition of the water in the channel in percentages

of these two masses using methods from NOAA Fisheries (2022b). These metrics calculated from the model were compared

with matching metrics determined using potential temperature and salinity from three different products: the database of CTD

profiles used in NOAA Fisheries (2022b), the GLORYS12 reanalysis, and the N01 buoy from the Gulf of Maine Moored Buoy

Program (Wallinga et al., 2003) (available at 180 m depth from June 2004–July 2017).475

Third, the ability of the model to simulate the cool bottom water along the shelf that forms the Mid-Atlantic Bight cold

pool was assessed by comparing June–September mean bottom temperatures in the model and GLORYS12 reanalysis and

calculating the cold pool index developed by du Pontavice et al. (2022) and reported in NOAA Fisheries (2022a). This index

uses the June-September bottom temperature anomaly averaged over a common cold pool region defined by depth, average

temperature, and latitude and longitude; see du Pontavice et al. (2022) for additional details. The index is higher when the480

bottom is warmer than average and the cold pool is smaller than average. du Pontavice et al. (2022) calculated the index using

the GLORYS12 reanalysis from 1993–2019 and extended the index farther back in time using a bias-corrected ocean model

simulation. For historical context, we show the full time series; however, the du Pontavice et al. (2022) index is only derived

from GLORYS12 during the time period when the model and data overlap.

The coastal ocean in the far northern portion of the model domain, including the Gulf of St. Lawrence and the coast of485

Labrador and Newfoundland, partially freezes over in the winter. We assessed the ability of the coupled SIS2 sea ice model

to simulate the spatial and temporal variability of sea ice cover in this region by comparing the model output with satellite

observations of sea ice concentration from the National Snow and Ice Data Center (NSIDC) (dataset NSIDC-0051; Cavalieri

et al. (1996)). First, we compared the model and satellite monthly climatologies of sea ice concentration over 1993–2019.

Second, we compared time series of the areal extent of sea ice in the Gulf of St. Lawrence by determining the total area with a490

monthly sea ice concentration above 15% for each month in the model and satellite data.

Moving the regional focus to the southern portion of the domain, the El Niño-Southern Oscillation (ENSO) has been shown

to drive marine resource-relevant variability of phytoplankton biomass in the Gulf of Mexico. Winters and springs when an

El Niño occurs are associated with increased river discharge, stronger mixing, and changes in coastal currents, which tend to

produce increased phytoplankton and surface chlorophyll in the northern Gulf of Mexico, while La Niña winters and springs495

show an opposite but weaker response (Gomez et al., 2019). We conducted an analysis similar to Gomez et al. (2019) to

determine if the model could reproduce this mode of variability. We compared composite means of model surface chlorophyll

during winter (December–February) and the following spring (March–May) in El Niño and La Niña years with composites

calculated from the OC-CCI remote sensing estimates for the same years. El Niño events were defined as those where the

3-month running average SST anomaly in the Niño-3.4 region, published as the ONI index by the NOAA Climate Prediction500

Center, exceeded 0.5 °C in December and remained positive in the following spring, and La Niña years were defined as those

where the ONI index was below -0.5 °C in December and remained negative in the following spring. During the period where

both the model and OC-CCI data are available (winter 1997–2019), six El Niño events occurred (1998, 2005, 2010, 2015,
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2016, 2019) and nine La Niña events occurred (1999, 2000, 2001, 2006, 2008, 2009, 2011, 2012, 2018); note that the year of

an event is defined here as the year following the occurrence of the December ENSO anomaly.505

Finally, the area along the Louisiana-Texas shelf with bottom hypoxia (bottom dissolved oxygen concentration below 2 mg

l−1) was calculated from model daily mean bottom oxygen and compared with data from the geostatistical model of Matli et al.

(2020) that combines observations, ocean model, and atmospheric data into a reliable estimate of hypoxic area. We integrated

the model hypoxic area over the same region as Matli et al. (2020) (between 89.512-94.605 °W and 28.219–29.717 °N with a

depth of 100 m or less). Model performance was assessed by comparing monthly climatologies of hypoxic area averaged over510

the years where the model and geostatistical estimates overlap (1993–2017) and by comparing the time series of monthly mean

hypoxic volume for July (the normal peak month of hypoxic area).

2.4.3 Computational implementation and scaling

To determine the feasibility of using the model to provide future predictions and projections with information about uncertainty

to support living marine resource applications, we assessed the total run time of the model relative to approximate values needed515

to support application needs and relative to the number of processing elements (PEs) used. The primary configuration of the

model evaluated in this paper was run using a 50x50 layout, which divides the 775x845 model grid across a 50x50 grid of

PEs, yielding a 16x17 chunk of the model domain on a typical PE. The MOM6 land masking feature, which eliminates PEs

that do not contain any ocean points, was enabled, resulting in only 1646 PEs actually used (a savings of 34%). To assess the

scalability of the model across other layouts, we determined the time needed to run 1 year of simulation using layouts of 40x40,520

50x50, 60x60, and 70x70 PEs (because the model domain is nearly square in terms of grid points, we only considered square

decompositions). We focused on the total run time of the model, including the time needed for initialization, running the main

loop, and writing output, since this time ultimately determines the computational tractability of the model. Each 1 year timing

simulation was repeated three times and the run times were averaged to obtain a more accurate result. In addition to assessing

the time needed to run one year of simulation, we evaluated the model efficiency by dividing the total computational cost of525

the run (the number of PEs times the time spent running the simulation) using the 40x40 layout by the computational cost of

each of the other layout experiments. The ideal efficiency of 1 would indicate that the run time scales exactly with the inverse

of the number of PEs (i.e., a configuration with twice the number of PEs would run in half the time), while efficiencies below

1 indicate that the model consumes more resources to complete a given simulation as the model domain is distributed across

greater numbers of PEs (even though it may still complete the simulation in less wall clock time).530

We also assessed the benefit of a key feature of MOM6: the ability to separate the time steps for the ocean barotropic and

baroclinic dynamics from the time step for tracer advection, thermodynamics, mixing, and coupled ocean biogeochemistry. The

“thermodynamics” time step for the latter set of processes can be run with a significantly longer time interval than the dynamics

for computational speed. The basic model configuration presented in this paper uses an 1800 second thermodynamics time step

and a 600 second baroclinic dynamics time step. We assessed the benefits of this configuration in terms of computational cost535

by repeating the 60x60 and 70x70 layout experiments discussed previously using a 600 s time step for both thermodynamics

and baroclinic dynamics, with all other configuration options identical (note that the 40x40 and 50x50 configurations cannot
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complete a year of simulation with this shorter time step before the reaching the wall clock time limit per job imposed by our

high-performance computing system).

These timing simulations were run on NOAA’s “Gaea” high performance computing system using the c4 partition that has540

36 Intel Broadwell processor cores per node. All model source code was compiled using “production” mode, which enables

aggressive compiler optimizations. The model source code is archived at https://doi.org/10.5281/zenodo.7893349.

3 Results

3.1 Basin-wide indicators of model performance and drivers of variability

The MOM6-COBALT-NWA12 model accurately simulates the broad patterns of mean sea surface temperature throughout the545

domain, with moderate biases that are most prominent in the vicinity of the Gulf Stream (Figs. 2–3). These biases include a

region of warm SST concentrated along the shelf break from Cape Hatteras to the Grand Banks and a region of cool SST to

the south. The strongest cool bias in the model is found east of the Grand Banks where the North Atlantic Current takes a

northward turn, which is consistent with the effects of an underestimation of the eastward extension of the Gulf Stream and the

northward turn of the current that is often seen in ocean models across a wide range of spatial resolutions (e.g., Bryan et al.,550

2007; Scaife et al., 2011; Sein et al., 2017). The cool bias in MOM6-NWA12 is substantially less than the biases of over -5°

found in 1/4° and 1/10° global climate models using a previous version of MOM, although some of the warm biases near the

coast are greater (Saba et al., 2016). Outside of the western boundary current region, the model SST bias is generally minor.

However, the SST biases are consistently negative between −0.5 and 0 °C, and the overall area-weighted mean bias is −0.23

°C compared to OISST. The spatial pattern of the model SST bias is consistent across seasons (Fig. 3); however, the magnitude555

of the bias is higher in winter and spring and lower in summer and autumn.
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Figure 2. 1993–2019 mean sea surface temperature in the model (a) compared with the OISST (b) and GLORYS12 (d) datasets, and the

difference between the model and the datasets (c, e).
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Figure 3. Difference between the 1993–2019 seasonal mean sea surface temperature in the model and the OISST dataset.
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Figure 4. 1993–2019 mean sea surface salinity in the model (a) compared with the regional climatologies (b) and GLORYS12 (d) datasets,

and the difference between the model and the datasets (c, e).

In the patterns of model mean sea surface salinity and bias (Fig. 4), a positive surface salinity bias is present along the shelf

from Cape Hatteras to the Gulf of St. Lawrence, in the same region as the positive SST bias. The co-occurrence of these biases

resembles, but is much milder than, the biases often seen in models with a poorly resolved Gulf Stream (e.g., Saba et al., 2016).

Elsewhere in the domain, the patterns in the model bias suggest some errors in the volume and placement of rivers or in the560

river plumes and coastal currents that carry riverine freshwater. For example, model salinity is biased low to the west of the

Mississippi River and high to the east. It is worth noting that at 1/12°, the model will not resolve the first Rossby radius of

deformation along the coastal ocean where the rivers discharge (Hallberg, 2013; Piecuch et al., 2018), and this will limit the

ability to capture the dynamics of the river plumes. Overall, the area-weighted model mean salinity is biased low by 0.27–0.28

units compared to the observational and reanalysis datasets.565

The model reproduces the broad patterns of winter mixed layer depths when compared to estimates derived from profiles

(Fig. 5). The spatial correlation coefficient for the mixed layer depth based on a density difference from the surface of 0.03 kg

m−3 is high (0.94) and the mean bias is negligible (0.90 m). The RMSE of 22.37 m is somewhat high relative to the typical

value; however, the high correlation and low median absolute error of 8.02 m suggests the higher RMSE may be primarily due

to mismatches in deep mixed layers. The model also has a tendency to predict winter mixed layers that are too deep to the north570

of the Gulf Stream along the shelf break, consistent with the temperature and salinity biases shown previously.
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Figure 5. Winter (January-March) mixed layer depth in the model (a) and the observation-based climatology of de Boyer Montégut (2004),

and the difference between the two (c).
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Figure 6. Evaluation of model Gulf Stream position based on the 15 °C isotherm at 200 m (a), the latitude of maximum sea surface height

variance (b), and an index based on anomalies in the latitude of maximum SSH variance (c).

Although the previous metrics suggest the presence of a northward bias to the typical Gulf Stream path, which would bring

excessively warm and salty water to the Northeast U.S. shelf, both of the metrics for the position of the Gulf Stream show

that the average position is remarkably close to observations (Fig. 6). The 15 °C isotherm of mean temperature at 200 m

displays the canonical separation from the shelf at Cape Hatteras in both the model and GLORYS12 reanalysis (Fig. 6a). This575

metric actually suggests the presence of a slight southward bias to the model Gulf Stream path, particularly downstream of the

separation, which is also seen in the metric based on SSH variance (Fig. 6b).
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At low frequencies, north-south shifts in the position of the Gulf Stream are well-simulated by the model, with a correlation

of 0.75 for the 25-month rolling mean Gulf Stream index (Fig. 6c). This simulation is particularly good considering that

shifts in the Gulf Stream path are typically difficult to capture even in data-assimilative reanalysis products (Chi et al., 2018).580

The model accurately places the Gulf Stream farther south than usual (indicated by a negative index) in the late 1990s with

anomalously northern positions in the early 1990s and 2000s. The modeled and observed position was relatively constant

during 2006–2013. Finally, the model roughly reproduces the northward shift in the Gulf Stream that occurred starting around

2014, although the shift occurs faster in the model. At higher frequencies, fluctuations in the model simulated position only

loosely track the observed fluctuations associated with individual eddies and meanders—the correlation between the model585

and observations decreases from 0.75 for the 25-month rolling averages to 0.41 for the monthly values. However, this is not

unexpected because the model boundaries are far from the region of interest and the model does not assimilate observations

(i.e., eddies and meanders are present, but the formation and evolution of individual observed eddies are not deterministically

simulated).

The spatial pattern of mean sea surface height in the northwest part of the model domain is consistent with Gulf Stream590

biases and the good performance in other parts of the domain (Fig. 7). Mean SSH closely resembles the reanalysis and satellite

altimetry datasets from the Loop Current through the Florida Strait and up to Cape Hatteras. Beyond Cape Hatteras, the SSH

pattern in the model has a weaker cross-shore gradient with more variability, the northwestern recirculation gyre (normally

located offshore of the southern Mid-Atlantic Bight and visible as a region of low SSH) appears to be absent, and the Gulf

Stream does not extend as strongly to the east and weakly curves to the north along the Grand Banks. These biases are consistent595

with the previous results: although the model simulates the mean and low frequency variability of the Gulf Stream path near

the separation point well, the weaker and more variable extension, a weaker northwestern turn along the Grand Banks, and

absent recirculation gyre combine to produce temperature and salinity biases with opposing patterns north and south of the

mean Gulf Stream.

Semidiurnal and diurnal tides are well simulated in the model, with amplitude RMSEs that are low compared to the typical600

amplitude (RMSE of 5.44 cm for the semidiurnal M2 amplitude and 1.29 cm for the diurnal K1 amplitude) and high spatial

correlations (0.95–0.96) (Figs. 8–9). Amplitude errors for the M2 tide are highest in the Gulf of Maine and Gulf of St. Lawrence

(Fig. 8). In the Gulf of Maine, the model M2 amplitude is too low in the Bay of Fundy and too high in the southwest portion

of the Gulf. M2 amplitudes are too high throughout the coastal Gulf of St. Lawrence, although the central amphidrome (tidal

node) is well placed in the model. The contour lines of the model M2 phase in the Caribbean Sea show a patchwork pattern.605

A closer look revealed a pattern of tidal amplitude similar to the surface expression of internal tides generated along the

Windward Islands and in the passage between Puerto Rico and the Dominican Republic found by Zaron (2019) (not shown).

For the diurnal K1 tide, the amplitude is also too high in the Gulf of St. Lawrence and along the majority of the U.S. East Coast

and in the Western Gulf of Mexico (Fig. 9). The phase of the model K1 tide is shifted by about an hour, particularly in the

interior of the domain away from the boundaries.610
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Figure 7. 1993-2019 mean sea surface height in the model (a) and the GLORYS12 reanalysis (b) and mean absolute dynamic topography

from the gridded satellite altimetry dataset (c). Note that the color scale for (c) is shifted by 0.4 m.
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Figure 8. Semidiurnal M2 tidal amplitude and phase estimated from hourly sea level output from the model (a) compared with the reference

TPXO9 tidal model data (b) and the difference between the model and reference M2 amplitude (c). Phase in panels a-b is indicated by a

different colored line for each hour.

Figure 9. Diurnal K1 tidal amplitude and phase estimated from hourly sea level output from the model (a) compared with the reference

TPXO9 tidal model data (b) and the difference between the model and reference K1 amplitude (c). Phase in panels a-b is indicated by a

different colored line for each hour.
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Shifting to biogeochemical patterns, the simulated surface nitrate (Fig. 10) and phosphate (Fig. 11) exhibit a robust large-

scale nutrient drawdown from winter into the summer months. Winter nitrate, however, has a moderate high bias in shelf-

adjacent waters in the northeastern part of the domain aligned approximately with high MLD biases in this region (Fig. 5). This

winter high bias delays the depletion of nitrate in the spring. The model and observations largely converge in the summer before

high biases tend to re-emerge in the autumn with the onset of deeper mixing. Phosphate shows a similar winter/spring high bias615

as nitrate, as would be expected from a bias rooted in overly deep mixed layers along the shelf break. In contrast with nitrate,

both the modeled and observed phosphate remain elevated in summer months in the coastal waters of the northeast United

States and Canada. Modeled phosphate, however, is somewhat lower than that observed. In the Gulf of Mexico, simulated

summer phosphate surpluses are not as high as those that WOA suggests. The proximity of observed highs with some of the

larger river systems in the southern Gulf of Mexico (e.g., the Panuco, Usamacinta, Coco) and Central and South America (e.g.,620

Magdalena and Orinoco) suggest that part of this misfit may be attributable to uncertain river inputs in this region. In addition

to the limited availability of river input data, ocean biogeochemical observations in the southern Gulf of Mexico are also sparse

(Estrada-Allis et al., 2020), which introduces additional uncertainty to the comparison.

Figure 10. Comparison of model seasonal mean surface nitrate (a, d, g, j) with the World Ocean Atlas (b, e, h, k), and the difference between

the datasets (c, f, i, l).
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Figure 11. Comparison of model seasonal mean surface phosphate (a, d, g, j) with the World Ocean Atlas (b, e, h, k), and the difference

between the datasets (c, f, i, l).

Figure 12. Evaluation of model seasonal mean surface chl-a (a–d) compared with OC-CCI satellite remote sensing estimates (e–h). Skill

metrics were calculated for log10 transformed chlorophyll.
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Figure 13. Evaluation of model seasonal mean surface chl-a (a–d, i–l) compared with OC-CCI satellite remote sensing estimates (e–h, m–p)

over the Northeast U.S. and Gulf of Mexico.

30

https://doi.org/10.5194/gmd-2023-99
Preprint. Discussion started: 9 August 2023
c© Author(s) 2023. CC BY 4.0 License.



The mean seasonal patterns of surface chl-a are simulated well by the model, despite some regional biases (Figs. 12–13).

Spatial correlations (of log10 transformed chlorophyll) between the model and OC-CCI remote sensing estimates range from625

0.83 in winter to 0.89 in autumn, and RMSEs in log10 units range from 0.21 in winter to 0.26 in summer, corresponding to

a factor of 1.6–2.0 error. The chlorophyll minimum within the oligotrophic subtropical gyre is consistent with the satellite

estimates, although chlorophyll is slightly higher than observed at the northern and southern limits of the gyre. Along the

coast, in the Northeast U.S. and Gulf of St. Lawrence (Fig. 13a–h), seasonal patterns and cross-shore gradients are reproduced

reasonably well, including the consistent chlorophyll hotspot on Georges Bank associated with sustained tidal mixing (Franks630

and Chen, 1996; Hu et al., 2008), the summer–autumn pattern of lower chlorophyll in the central Gulf of Maine ringed by

higher chlorophyll along the coasts, high chlorophyll concentration in the Lower St. Lawrence Estuary and southern Gulf of

St. Lawrence and a chlorophyll maximum that shifts from the spring in the Gulf of St. Lawrence to summer in the Estuary

(Laliberté and Larouche, 2023). Spatial and seasonal patterns of surface chlorophyll are also simulated well in the Gulf of

Mexico (Fig. 13i–p). Although seasonal and spatial patterns are reproduced well, in many of the coastal regions, including635

the northern Gulf Coast and the Northeast U.S and Gulf of St. Lawrence, modeled surface chlorophyll concentrations are

substantially lower than the satellite estimates. However, we note that satellite based chlorophyll estimates are less reliable

and more difficult to interpret in these turbid nearshore environments (Schofield et al., 2004; Dierssen, 2010), and satellite

estimates in the northern regions of the model domain, including the Gulf of St. Lawrence, are also affected by sea ice and low

sun angles in the winter that limit the availability of data (Laliberté and Larouche, 2023).640

Looking up the foodweb, the simulated seasonal mean mesozooplankton biomass (Fig. 14) also shows seasonal and spatial

gradients consistent with net data, though values in the South Atlantic Bight are higher than the relatively sparse observations

in the region suggest. On average, the model is biased high even after adjusting for a factor of 2 under-sampling of the

full mesozooplankton community. However, as discussed in the methods, this correction still neglects escapement by large

mesozooplankton and potential contributions by undersampled gelatinous components. In the offshore waters of the subtropical645

gyre, mesozooplankton biomass generally falls to around 1–3 mg C m−3 (200–600 mg C m−2). This is considerably larger

than the 330 micron mesh net estimates included in the COPEPOD database, but more comparable to smaller mesh sampling

at the Bermuda Atlantic and Hawaii Ocean Time Series (e.g., Roman et al., 2001).
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Figure 14. 0–200 m average mesozooplankton biomass climatology along the U.S. East Coast (a–h) and in the Gulf of Mexico (i–p).

Observations from the COPEPOD dataset have been adjusted for approximate undersampling by scaling by a factor of 2.
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Moving to the carbon system dynamics, the model annual average surface pCO2 is a close match to the SOCAT and data-

derived products (Fig. 15a–f). The main bias relative to both observation-based products is higher modeled pCO2 in the650

subtropical gyre, a bias on the order of 10%. The model also appears to have biases in the Gulf of St. Lawrence and off

the coast of Newfoundland and Labrador; however, the observation-based products contain fewer observations in this region

and may be affected by seasonal ice cover (Landschützer et al., 2020). Comparing the seasonal variability of pCO2 in the

model with the machine learning based estimate of Landschützer et al. (2020) (Fig. 15g–i), the model has higher variability

along the coast and south of the Gulf Stream path and lower variability in the southern Labrador Sea in the northeast corner of655

the model domain. The bias towards higher seasonal cycle amplitude was also found in a 0.5° global simulation with COBALT

by Roobaert et al. (2022) and is likely attributable to the underestimation of the seasonality of non-thermal processes (i.e.,

biological update) in spring–summer and winter DIC mixing/supply in fall–winter.

Annual mean patterns in simulated alkalinity and dissolved inorganic carbon (DIC) generally agree with observation-based

climatologies, with spatial correlations of 0.93 and 0.87, respectively, and mean biases that are minor compared to the range660

of values found across the domain (Fig. 16a–f). The primary alkalinity biases are a positive bias in the Northeast United States

and Canada, which is consistent with overly prominent high alkalinity/high DIC Gulf Stream waters. A low alkalinity bias is

evident in the southern parts of the model domain, particularly in the vicinity of large freshwater outputs in Central and South

America. This region is associated with a freshwater bias (Fig. 4), suggesting that the bias may arise from overly prominent

low alkalinity freshwater fluxes in this region. However, the observations in this region are highly uncertain: the GLODAPv2665

dataset, which the Jiang et al. (2022) product sources from, contains almost no observations in the Caribbean and Gulf of

Mexico (Lauvset et al., 2021). The model DIC biases have a similar spatial pattern as the alkalinity biases, which is consistent

with these properties being driven by the same processes, although the magnitude of the DIC biases is less.

The modeled and observed surface aragonite saturation exhibit a similar negative gradient with latitude (Fig. 16g–i), and

the model is highly correlated with the observations (r = 0.97). While none of the mean values at the surface fall below a670

saturation state, and only a few grid cells in nearshore estuarine areas fall below the value of 1.5 that is considered suboptimal

(Siedlecki et al., 2021), much of the northeastern coast of the United States and Canadian coastal waters fall below 2. In the

high alkalinity waters of the tropical North Atlantic, by contrast, the saturation state is often > 4. The largest discrepancies in

the model occur in the mid-Atlantic Bight, which tends to have a greater component of high Ωar tropical water and is consistent

with the stronger Gulf Stream influence noted previously, and in the Gulf of Mexico, where the observations may not sample675

the nearshore region of low saturation state.
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Figure 15. Modeled (left) and observed (center) surface pCO2 spatial distributions (in µatm) and model bias (right) on annual average (a–f)

and seasonal timescale (g–i). The seasonal timescale evaluation is performed on the seasonal amplitude which is expressed as the root mean

square of the monthly climatology pCO2 anomalies (rms, in µatm). The model evaluation is performed directly against pCO2 observations

derived from the Surface Ocean CO2 Atlas database version 2021 (SOCATv2021, Bakker et al. (2016)) and against a pCO2 data-product

generated from the SOCAT observation by a two-step neural network interpolation (data-product, Landschützer et al. (2020)).
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Figure 16. Mean surface alkalinity (a–c), dissolved inorganic carbon (d–f), and aragonite saturation state (g–i) in the model (left panels), the

observation-derived climatology (center panels), and the difference between the model and observations (right panels).
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Figure 17. 2005–2019 sea surface temperature trends from the model (a) compared with trends from the OISST (b) and GLORYS12 (d)

datasets, and the difference between the model and the datasets (c, e).

3.2 Relevant regional features and biogeochemical responses

As described in the introduction, one of the challenges for the intended applications of the modeling system described herein

is to connect large-scale ocean dynamics to regional responses. This requires the model to capture both the large-scale patterns

(described in the preceding section), and more local marine resource relevant dynamics. One of the largest and most impactful680

changes in recent decades has been the substantial warming in the Northwest Atlantic Ocean, particularly along the Northeast

U.S. coast. The model is largely able to simulate the observed linear SST trends over 2005–2019, with an overall spatial

correlation of 0.90–0.91 and negligible mean bias (Fig. 17). Both OISST and the GLORYS12 reanalysis show a broad pattern

of surface cooling at the southern edge of the subpolar gyre in the northwestern corner of the domain and surface warming

north of the Gulf Stream along the continental shelf and shelf break, which appears to be consistent with the predicted effect685

of a weakening Atlantic Meridional Overturning Circulation (Caesar et al., 2018), and this pattern is reproduced well in the

model. However, there is some mismatch between the modeled and observed trends at fine scales along the shelf: the model

temperature increase is too large along the Mid-Atlantic Bight and too small (although still positive) in the Gulf of Maine and

Scotian Shelf and offshore of these regions beyond the shelf break.

Interannual bottom temperature variability within Northeast U.S. Ecological Production Units is simulated well by the690

model, although long-term trends are missed in some regions (Fig. 18). The correlation between the modeled and observed

or reanalysis anomalies is highest in Georges Bank, where strong mixing couples the bottom temperature variability with the
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Figure 18. Annual average bottom temperature anomalies in four different Northeast U.S. ecological production units computed from model,

reanalysis, and observed data.

atmospheric forcing, and the Mid-Atlantic Bight, and is lowest in the Gulf of Maine. Observations and reanalysis data from all

EPUs show a general pattern of a sharp cold snap in 2004 that was associated with deep winter mixing (Taylor and Mountain,

2009) followed by a strong warming trend. Although the model reproduces these trends and the superimposed variability to695

some extent, it substantially underestimates the warming trend in the Gulf of Maine and the southwestern Scotian Shelf EPU.

These underestimated bottom trends are consistent with the underestimated SST trends in these regions (Fig. 17). On the

other hand, the observed and reanalysis time series began to diverge around 2010, with the reanalysis warming faster than the

observations, and the model is generally closer to the observations than the reanalysis during this period.

The mean and range of modeled temperature and salinity at 150-200 m depth in the Gulf of Maine Northeast Channel700

is broadly consistent with the data from CTD and buoy observations and the GLORYS12 reanalysis (Fig. 19a). Relative to

the reanalysis, the average model salinity is too high by 0.12, and the average model temperature is too warm by 0.25 °C.

Compared to the analysis of of Saba et al. (2016), this warm bias is less than the warm bias of the 1/10° CM2.6 climate

model, and substantially less than the warm bias of several degrees found in the 1/°4 CM2.5 climate model, which highlights

the benefits of high-resolution downscaling. Although the reanalysis, CTD, and moored buoy data products all have slightly705

different means and ranges of temperature and salinity, all three products and the model show the same mixing of predominantly

Warm Slope Water (WSW) and Labrador Slope Water (LSW) with a minor addition of Scotian Shelf Water. Compared to all

three data products, however, the model temperature and salinity variability is confined within a smaller range. The model

has relatively poor skill at simulating the time series of the mixing between these water masses (Fig. 19b–c); over the full

1993–2019 time period, the correlation between the model and data-derived water masses range from 0.30 to 0.43. Compared710

to the mooring-derived water masses, which are only available from 2004–2017, the model has much higher correlations of
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Figure 19. (a) Monthly potential temperature and salinity between 150–200 m within the Northeast Channel compared with known water

masses. (b–c) Time series of the composition of the water between 150–200 m within the Northeast channel in terms of Labrador Slope

Water (b) and Warm Slope Water (c).

0.82 for both LSW and WSW. This difference in correlation is due to the model missing several prominent fluctuations in water

masses during the early part of the time series, including the significant drop in WSW in 1998, and accurately simulating many

of the more recent fluctuations, including the second drop in WSW in 2007–2008 and the subsequent rebound. All three data

products show this rebound and a continued increase in WSW persisting through 2019, although the products diverge from715

each other to some extent during this time. The model also simulates some increase in WSW and decrease in LSW after 2010,

although the changes are less pronounced than in any of the data products.

Model bottom temperatures in the Mid-Atlantic Bight Cold Pool region are biased warm by 0.70 °C on average (Fig.

20a–c), which is consistent with the warm bias seen in SST in this region. The model broadly simulates the spatial pattern of

temperature associated with the cold pool with a spatial correlation coefficient between the model and GLORYS12 reanalysis of720

0.88. Year-to-year variability of temperature anomalies associated with the cold pool, as indicated by the index of du Pontavice

et al. (2022) based on June–September average bottom temperature anomalies, also tracks the reanalysis data reasonably

well (correlation coefficient between time series of 0.57) considering that this feature is typically challenging to model. This

correlation is lower than the correlation of 0.85 between survey and model annual average bottom temperature anomalies across

the Mid-Atlantic Bight EPU (Fig. 18d), which is consistent with higher model skill during winter and spring when the water725

column is well mixed and bottom temperatures are connected to atmospheric forcing.

The model reliably simulates the spatial and temporal evolution of sea ice in the northwestern portion of the model domain

(Figs. 21–22). The model has a modest bias towards earlier freezing and melting (Fig. 21), with more extensive sea ice coverage
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Figure 20. Bottom temperature from the model (a) and du Pontavice et al. (2022) (b) in the cold pool region averaged over June-September,

and the difference between the two datasets (c). (d) Comparison of the model cold pool index, based on bottom temperature anomalies, with

the same index calculated from regional ocean model (before 1993) and GLORYS reanalysis (1993–2019) data by du Pontavice et al. (2022).

than observed in December and January and less in April. The low bias in April may be due to the omission of open boundary

conditions for sea ice in the model, which does not allow the transportation of sea ice by the Labrador Current through the730

northern model boundary and into the domain. The time series of monthly sea ice extent (Fig. 22) shows that the model captures

nearly all of the year-to-year variability in sea ice coverage, with correlation coefficients between 0.94 in January and 0.96 in

February. The satellite data show an abrupt shift towards lower and more variable ice coverage beginning around 1995, and this

shift is correctly simulated by the model (although the model simulation only began in 1993 and thus it is not certain whether

the model reproduces the relatively stable period before 1995).735
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Figure 21. 1993–2019 monthly climatology of sea ice concentration from the model (left panels) and a satellite observation dataset (Cavalieri

et al., 1996) (right panels).
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(a) January sea ice extent in Gulf of St. Lawrence
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(b) February sea ice extent in Gulf of St. Lawrence

Model Observed (r=0.96)

1980 1985 1990 1995 2000 2005 2010 2015 2020
0

100000

200000

300000

Ice
 e

xt
en

t (
km

2 )

(c) March sea ice extent in Gulf of St. Lawrence
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Figure 22. Time series of the extent of sea ice within the Gulf of St. Lawrence during January (a), February (b), and March (c) from the

model and the satellite observation dataset (Cavalieri et al., 1996).
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The model reproduces the primary response of surface chlorophyll in the Gulf of Mexico to both the El Niño and La Niña

phases of ENSO, although the magnitude of the model response is not as large (Fig. 23a–d). In the satellite observations,

surface chlorophyll is higher than normal along the majority of the Northern Gulf of Mexico coast during the winter and spring

seasons of an El Niño event (Fig. 23a–d), although, as noted before, satellite estimates should be interpreted with caution in

this turbid nearshore region. The model simulates a positive chlorophyll response offshore of the Mississippi River delta and740

the western Gulf of Mexico, but fails to simulate the enhanced chlorophyll along the West Florida Shelf. In agreement with

Gomez et al. (2019), the observed chlorophyll response during a La Niña winter and spring is opposite and slightly weaker

compared to the response during El Niño (Fig. 23e–h). The model and remote sensing datasets generally agree that chlorophyll

is lower than average over the majority of the region during La Niña winters. The model also reproduces increased surface

chlorophyll near the mouth of the Mississippi River and decreased chlorophyll along the Louisiana-Texas shelf during La Niña745

springs. However, the model again fails to simulate low chlorophyll anomalies along the West Florida Shelf and Southeast U.S.

coast. Across the region plotted in Figure 23, the rank correlation between the model and satellite anomalies is slightly higher

in spring than in winter for both El Niño and La Niña years.

Finally, bottom hypoxia along the Louisiana-Texas shelf is simulated reasonably well by the model (Fig. 24), especially

given the small scale over which this hypoxia occurs, the omission of extremely shallow areas in the model bathymetry (which750

has a minimum depth of 10 m), and the basic representation of coastal benthic processes in COBALT. The seasonal variation

of hypoxic area in the model, peaking in July, is consistent with the area estimated from cruise observations and other data

by Matli et al. (2020) during the months of May–September (Fig. 24a). In all months, the model hypoxic area is less than the

observed area. During July, the model underpredicts hypoxic area by 3962 km2 on average, or about 25% of the observed area

(Fig. 24b). About 1/4 of the interannual variability is correctly predicted by the model (r = 0.51).755

42

https://doi.org/10.5194/gmd-2023-99
Preprint. Discussion started: 9 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 23. Winter and spring surface chlorophyll-a anomalies during El Niño years in the model (a, c) and satellite estimates (b, d), compared

with the same during La Niña years (e–h). To display the wide range of chl-a anomalies, values within ±0.1 mg m−3 are shaded on a linear

scale, while values outside of this range are shaded on a logarithmic scale. Annotated correlation values give the Spearman rank correlation

between the model and satellite anomalies over the plotted region.
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Figure 24. Monthly climatologies of hypoxic area (area with a July mean bottom oxygen concentration below 2 mg l−1) over the LA-TX

shelf from the model and geostatistical estimates from Matli et al. (2020) (a) and time series of July mean hypoxic area from the model and

Matli et al. (2020) (b). Gray shading in (b) denotes the 95% confidence interval for the Matli et al. (2020) data.
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3.3 Computational performance

In Figure 25, we evaluate the total run time of the model under several choices of grid decomposition to determine whether

the computational cost of the model is low enough to enable running the large ensembles of long simulations that are needed

to support the intended applications. Using the 40x40 decomposition, which distributes the 775x845 model grid onto a 40x40

grid of processing elements (PEs), the model can run one year of simulation in about 11.5 hours of wall clock time. As the760

number of PEs is increased, the wall clock time is reduced, but with an efficiency that is significantly less than 1: the 50x50

decomposition has an efficiency of just under 0.8 (in other words, the total computational cost in processor-hours of the 40x40

case is just under 0.8 times the cost of the 50x50 case), and the 70x70 decomposition has an efficiency of less than 0.6. Despite

the increased total computational costs of the larger PE layouts, these layouts support run times fast enough meet our informal

performance criterion of 3 simulation years per day. Both the 60x60 and 70x70 cases exceed this threshold, which allows them765

to run nearly a century of continuous simulation in one month (assuming no cluster queue wait time). The 50x50 configuration,

which was used for the main hindcast simulation in this paper, nearly meets this goal as well. The 40x40 configuration, although

slower, can still complete two simulation years per day, which allows the completion of two 30-year time slices (for example,

a historical simulation and a future projection) in one month. This configuration is also optimal for reducing resource usage

during individual hindcast simulations, where the results can be continuously assessed while the model runs, or for forecast770

experiments where multiple ensemble members can be run efficiently in parallel. Furthermore, the scaling efficiency of this

tracer-heavy model is better than seen in MOM6 models without coupled biogeochemistry, which generally have a practical

limit of 15x15 points per PE due to the 2-dimensional barotropic solver.

A key feature of MOM6 that improves the computational economy is the ability to efficiently integrate the thermodynamics

and tracer processes on a longer time step than the baroclinic and barotropic dynamics time steps that are highly limited by775

stability concerns. Because the coupled COBALT biogeochemical model integration is called during the thermodynamics time

step and COBALT introduces 40 new tracers that must be advected and diffused by the ocean model component during the

thermodynamics time step, taking longer thermodynamics time steps can substantially reduce the total computational cost of

the model. In the present configuration, we use an 1800 second thermodynamics time step, which is 3 times longer than the

600 second baroclinic time step. To evaluate the cost savings of this feature, we ran two experiments with a 600 second ther-780

modynamics time step and plotted the run times as empty shapes in Figure 25. For a given grid decomposition, an 1800 second

thermodynamics time step results in a factor of 2 decrease in the total run time compared to a 600 second thermodynamics

step. Because of inefficiencies in scaling with large numbers of PEs, for a given total run time, the reduced number of PEs

needed by the longer thermodynamics time step results in a factor of 3 decrease in the computational cost (compare the 40x40

decomposition with an 1800 s step with the 70x70 decomposition with a 600 s step). MOM6 is also computationally efficient785

at handling tracers in general: using the 1800 s thermodynamics step, the inclusion of coupled COBALT biogeochemistry and

its 40 tracers only results in about a 2.5 times increase in the computational cost (not shown).
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Figure 25. Total wall clock time needed to run one year of model simulation as a function of the number of processing elements (PEs).

Shapes and colors indicate the grid of PEs onto which the model domain is distributed before eliminating all-land PEs. Dotted and dashed

lines indicate various scalings relative to the 40x40 case. The two empty shapes are simulations with the thermodynamics time step set to the

same as the dynamics time step. Both plot axes are on a logarithmic scale.

4 Discussion

MOM6-COBALT-NWA12 exhibited good performance at simulating a wide range of ecosystem-relevant physical and biogeo-

chemical diagnostics while also satisfying computational performance constraints. Long-term means and seasonal climatolo-790

gies were simulated well for nearly all metrics, with the main biases across quantities often related to challenges in simulating

the Gulf Stream. The 1/12° resolution used here is only slightly higher than the 1/10° resolution considered to be a necessary

but not sufficient condition for resolving the Gulf Stream separation and path (Chassignet and Marshall, 2008). A version of

the model with highly refined resolution, on the order of 1/25° or 1/50°, may improve the Gulf Stream path and variability and

reduce the biases, as has been found in studies of other models on similar domains (Chassignet and Xu, 2017, 2021). However,795

such increases in resolution would also greatly increase the computational costs. An 8 times increase in computational cost

is generally incurred for each doubling of the horizontal grid resolution (4 times for the increase in the number of grid cells,

and 2 times for the required time step decreases to maintain numerical stability, although in MOM6 the thermodynamics time

step need not be decreased with increasing resolution and this factor may be more favorable). We are currently running higher

resolution simulations to better quantify the model skill and computational cost tradeoffs associated with enhanced resolution800

in the NWA12 domain.

Metrics that evaluate the model on the basis of interannual to decadal variability, rather than long-term means, also showed

significant skill, particularly for lower-frequency variations, along with some errors possibly related to the Gulf Stream bias.

Variability of the Gulf Stream position, bottom temperatures in the Northeast U.S. EPUs, sea ice in the Gulf of St. Lawrence,

and sea surface temperature trends all compared reasonably well with the respective observed time series. However, the model805
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slightly underestimated recent surface warming in the Gulf of Maine and largely failed to simulate the recent bottom warming,

and the composition of deep water in the Northeast Channel was only moderately coherent with observations during the full

1993–2019 time period, though agreement with buoy data over the last 15 years was stronger. Some of the lower performance

in this region may be caused by unpredictable stochastic variability, such as warm core eddies shed from the Gulf Stream that

bring warm and salty water to the shelf and coast (Du et al., 2021; Gawarkiewicz et al., 2019). While eddies are present at810

1/12° resolution, the formation and evolution of individual eddies is not deterministically simulated without data assimilation.

This is consistent with the lower correlation with observations for the monthly Gulf Stream index compared to the 25-month

rolling mean.

During development of the model, we found several parameters that exerted a strong influence over the physical properties

of the model simulation. First, the separation point and path of the Gulf Stream was influenced by the biharmonic viscosity815

parameters: higher viscosity produced a later, northerly separation, and lower viscosity produced an earlier, southerly separa-

tion. This result is consistent with numerous other studies using other models (e.g., Bryan et al., 2007; Chassignet and Garaffo,

2001). Our biharmonic viscosity parameterization, the maximum of a velocity scale of 1 cm s−1 times the grid spacing cubed

and a Smagorinsky viscosity with a coefficient of 0.015, results in a typical viscosity of about 3.8× 109 m4 s−1 at the lat-

itude of Cape Hatteras. The viscosity cannot be substantially reduced at this resolution without introducing grid scale noise820

and instabilities or increased without shifting the Gulf Stream separation northward and exacerbating the warm temperature

biases along the shelf. Compared to other studies, the viscosity in the MOM6-NWA12 is lower than the viscosity in the 0.1°

ocean resolution models of Li et al. (2022) and Sasaki et al. (2020). The velocity scale of 1 cm s−1 is the same as the 1/4°

and 1/2° models of Adcroft et al. (2019), although A19 used a higher Smagorinsky coefficient of 0.06 and included an addi-

tional Laplacian viscosity in regions of the 1/2° model where the resolution was coarser than the first baroclinic deformation825

radius. Chassignet and Garaffo (2001) and Chassignet and Xu (2017) also used the same biharmonic velocity scale; however,

Chassignet and Garaffo (2001) found that a small biharmonic viscosity alone produced an early separation of the Gulf Stream

and could only obtain an accurate simulation with Laplacian viscosity added everywhere in the model domain. Aside from

viscosity, MOM6-NWA12 has other differences from these models, including explicit tides and z∗ vertical coordinates rather

than isopycnal or hybrid coordinates, and identifying which factors contribute to obtaining a satisfactory simulation with lower830

viscosity is left for future work. This line of research is likely to benefit from the flexible vertical coordinate capability of

MOM6.

Second, the front length specified in the parameterization for restratification by submesoscale eddies has a strong control

over the mixed layer depth in MOM6, as noted by Adcroft et al. (2019). The front length of 1500 m used here is greater than

the 500 m used in Adcroft et al. (2019), which results in a decreased restratification effect. The front length is also greater than835

suggested by the scaling developed by Bodner et al. (2023), which predicts front lengths shorter than even 500 m throughout

most of the NWA12 model domain. Shorter front lengths would decrease mixed layer depths, which would be beneficial in

some regions of the domain that have a bias towards deeper winter mixed layers (Fig. 5). However, the reduced mixing caused

by a stronger restratification effect would have other impacts, including increasing the bottom temperature bias and reducing

the extent of the cold pool in the Mid-Atlantic Bight (Fig. 20). The chosen value of 1500 m is thus a reasonable compromise.840
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Finally, the coefficient used in the scalar approximation of the effect of tidal self-attraction and loading (SAL) has a strong

control on tidal range in the model, particularly in the Gulf of Maine and Gulf of St. Lawrence. In this scalar SAL approxi-

mation, the effect of SAL is equal to a single, constant coefficient times the local model free surface elevation. The coefficient

value of 0.01 used in this study is significantly lower than values ranging from 0.085–0.12 commonly used in global tide mod-

els (Accad and Pekeris, 1978; Ray, 1998; Stepanov and Hughes, 2004). In the NWA12 regional model, increasing the SAL845

coefficient increases M2 amplitude in the Gulf of St. Lawrence and decreases it in the southwest Gulf of Maine. Increasing

SAL above 0.01 would thus reduce the Gulf of Maine M2 amplitude bias in the current model but increase it in the Gulf of St.

Lawrence (Fig. 8). The value of 0.01 is a compromise between these two biases and the effects they have on regional hydrody-

namics. In reality the effect of SAL is not constant but varies as a function of the tidal spatial scales (which in turn vary with

water depth) and other factors (Ray, 1998; Stepanov and Hughes, 2004), and modeling studies have found that the coefficient850

should be smaller than the typical 0.085–0.12 over most of the Atlantic Ocean, and particularly in the Gulf of Mexico and

along the U.S. East Coast (Irazoqui Apecechea et al., 2017; Stepanov and Hughes, 2004). We consider the scalar value of 0.01

to produce results that are sufficiently accurate for the intended use of the current version of the model, but separate ongoing

studies may explore the effect of more sophisticated models of SAL and the impacts on coastal hydrodynamics.

5 Conclusions855

As a first step towards the goal of providing information about historical ocean-ecosystem conditions and possible future

changes that could support living marine resource management and applications, we developed a regional model of ocean

dynamics and biogeochemistry for the Northwest Atlantic Ocean. Comparison of a model historical simulation with data from

reanalysis and observations showed that the model generally performed well at simulating both historical mean conditions and

significant trends and variability with minimal drift. This suggests that the model can provide the accurate information needed860

for many applications; notably, several of the evaluation metrics in this paper and the observations for them were taken directly

from reports used to inform fisheries managers. However, more detailed skill evaluations specific for each intended application

will likely be necessary to better understand the reliability and uncertainty of the model simulations.

Not all aspects of the model simulation reproduced the observations as well as might be desired. Interannual variability of

fine-scale features, including the Mid-Atlantic Bight cold pool and the area of hypoxia along the LA-TX shelf, were simulated865

with correlation coefficients around 0.5, which is commonly considered a lower bound for useful prediction skill. Recent

warming at the surface and bottom of the Gulf of Maine was also underestimated. Future model simulations focused more

specifically on these regions may benefit from employing additional downscaling by nesting a 1/25° or higher local model

within the 1/12° regional NWA12 domain to obtain some of the benefits of higher resolution with a lower computational cost.

Adjustments to the spacing of the vertical coordinates to enhance resolution in coastal areas, or switching from z-level to an870

adaptive hybrid coordinate that is locally terrain following, may also improve the simulation of these features. Nested local

domains would also allow adjusting the model parameters, such as the mixed layer eddy front length and tidal self-attraction

and loading coefficient, to optimal values for each region. Furthermore, as it was not possible in this paper to compare the model
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with every relevant metric and dataset within the entire NWA12 domain, development of local domains could focus on a more

comprehensive evaluation for the local area. However, unless two-way nesting was employed, these smaller, nested domains875

would limit the applicability for large-scale issues like cross-boundary shifts in species distributions that may occur under

climate change, and a proliferation of different models could introduce confusion and complexity and complicate development

of the core model components.

Although historical model simulations can provide useful information for LMR applications, for example by reconstructing

historical conditions when observations were sparse (du Pontavice et al., 2022), forecasts and projections of future conditions880

are essential for managing and adapting to the impacts of climate variability and change on LMRs (Tommasi et al., 2017b).

Interdisciplinary research has repeatedly emphasized that forecast users benefit from being provided with information about

forecast accuracy and uncertainty (e.g., Ramos et al., 2013; Roulston et al., 2006). However, providing reliable uncertainty

information generally requires running long ensemble simulations, and the imposing computational costs of these simulations

has limited the number of cases where this information is provided (Lewis et al., 2022). The model developed here takes885

advantage of the efficiency of MOM6 to achieve runtimes of more than 3 simulation years per day, our informal goal for a

useful model that can run large ensembles in reasonable times. Although there are areas where this first version of the model

can be improved, we believe it forms a useful starting point for following the recommendations of Dietze et al. (2018) by

iteratively creating testable predictions that can both inform LMR applications and produce insights on how to improve the

model and make better predictions.890

Code availability. The source code for each component of the model has been archived at https://doi.org/10.5281/zenodo.7893349. MOM6 is

built on an open development paradigm, and the Git repositories at https://github.com/mom-ocean/MOM6 and https://github.com/NOAA-GFDL/

MOM6 provide a means for the community to obtain updated and experimental source code, report bugs, and contribute new features. Repos-

itories for the other model components are also available at https://github.com/NOAA-GFDL.

Data availability. All model output that was analyzed in this paper has been published at https://doi.org/10.5281/zenodo.7893387. Model895

parameter files and prepared forcing files are published at https://doi.org/10.5281/zenodo.7893727.

The datasets used for comparison with the model and the URL or DOI where the data can be downloaded are listed as follows. GLO-

RYS12 reanalysis (https://doi.org/10.48670/moi-00021); OISST v2 (https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html); Re-

gional temperature and salinity climatologies (https://www.ncei.noaa.gov/products/regional-ocean-climatologies); Mixed layer depth (https:

//doi.org/10.17882/91774); Global ocean gridded sea surface heights (https://doi.org/10.48670/moi-00148); TPXO9 (https://www.tpxo.net/900

home); OC-CCI v6.0 (https://www.oceancolour.org/); COPEPOD (https://www.st.nmfs.noaa.gov/copepod/biomass/biomass-fields.html); World

Ocean Atlas 2018 (https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18); SOCATv2021 (https://doi.org/10.25921/yg69-jd96); Sur-

face pCO2 climatology (https://doi.org/10.25921/qb25-f418); Alkalinity, DIC, and aragonite saturation (https://doi.org/10.25921/g8pb-zy76);

EPU bottom temperatures (https://github.com/NOAA-EDAB/ecodata/releases/tag/3.0); Northeast U.S. CTD profiles (ftp://ftp.nefsc.noaa.
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gov/pub/hydro/matlab_files/yearly); Buoy N01 (http://www.neracoos.org/erddap/info/index.html?); Sea ice concentration (https://doi.org/905

10.5067/MPYG15WAA4WX); Cold pool index (https://github.com/NOAA-EDAB/ecodata/releases/tag/3.0).

The datasets used to create the model forcing and the URL or DOI where the data can be downloaded are listed as follows. GLO-

RYS12 reanalysis (https://doi.org/10.48670/moi-00021); TPXO9 (https://www.tpxo.net/home); World Ocean Atlas (https://www.ncei.noaa.

gov/archive/accession/NCEI-WOA18); GloFAS (https://doi.org/10.24381/cds.a4fdd6b9); USGS Gauge 07374525 (https://waterdata.usgs.

gov/monitoring-location/07374525/); ERA5 (https://doi.org/10.24381/cds.adbb2d47); Carter et al. (2021) alkalinity and DIC estimation al-910

gorithm (https://doi.org/10.5281/zenodo.5512697); RC4USCoast (https://doi.org/10.25921/9jfw-ph50); GlobalNEWS2 (https://doi.org/10.

1016/j.envsoft.2010.01.007); Meinshausen et al. (2017) atmospheric CO2 (https://doi.org/10.22033/ESGF/input4MIPs.1118, https://doi.org/

10.22033/ESGF/input4MIPs.9866). Data from Lavoie et al. (2021) and Stock et al. (2014) can be obtained by contacting the corresponding

authors.

Appendix A915

Table A1. Parameter values used for the 4 phytoplankton group COBALT formulation enlisted herein. The rationale underlying the variation

of parameters across sizes and functional types is consistent with Stock et al. (2020), and further discussion can be found therein.

Param Name Units Small Medium Large Diazo

P C
max Maximum photosynthetic rate

at 0 °C

day−1 0.9 1.0 0.9 0.6

αchl ∗ chl-a-specific initial slope of

the photosynthesis-light curve

g C (g chl)−1 (µmol

photons m−2)−1

2.5 × 10−5 1.25 × 10−5 0.5 × 10−5 0.5 × 10−5

θmax Maximum chl-a:C ratio g chl (g C)−1 0.035 0.045 0.055 0.035

kno3 Half-saturation for nitrate µM 0.5 1.0 2.5 5.0

knh4 Half-saturation for ammonium µM 0.01 0.02 0.05 0.1

kpo4 ∗∗ Half-saturation for phosphate µM 0.01 0.02 0.05 0.1

kfed Half-saturation iron update µM 0.0004 0.0008 0.002 0.004

kfe2c Half-saturation for iron cell

quota

mol Fe (mol C)−1 2 4 10 12

fe2cmax Maximum Fe:C ratio mol Fe (mol C)−1 50 250 500 500

N:Pmin Minimum N:P ratio (P-replete) mol N (mol P)−1 20 16 14 40

sinkmax Maximum sinking rate (non-

aggregated)

m day−1 0 1 5 1

magg Aggregation loss rate constant day−1 µmol N−1 kg 0.05 0.10 0.25 0

mvir Viral loss rate constant day−1 µmol N−1 kg 0.25 0.125 0.05 0.05

∗Values in µmol photons m−2 s−1 were converted to Watts m−2 assuming 4.60 Watts m−2 per µmol photons m−2 s−1(Kirk, 1994). ∗∗Value scaled by N:P / N:Pmax

to account for P-frugality.
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Table A2. The innate prey availability applied for each zooplankton consumer (column) to each potential prey item (column). The maximum

innate availability is 1. Prey switching between herbivory and carnivory is parameterized as described in Stock et al. (2008).

Prey

Predator B SP MP LP DIAZO SZ MZ LZ

SZ 0.5 1.0 0.4 0 0 0 0 0

MZ 0 0.4 1.0 0.25 0.75 1.0 0 0

LZ 0 0 0.4 1.0 0.4 0 1.0 0

Author contributions. ACR, CAS, AA, RH, MJH, KH, NZ, RD, WC contributed source code for regional MOM6, COBALT, SIS2, and/or

other components of the model framework. ACR, CAS, EJD, FG, DK, DL, JS contributed to preparation of model input files. ACR, CAS,

EC, MA, HdP, FG, JGJ, DL, LR, AR, VS, SS contributed to evaluation and interpretation of the model results. ACR and CAS prepared the

initial draft of the manuscript. All coauthors participated in discussions during various stages of the model development and evaluation and

read and approved the final version of the manuscript.920

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. Vimal Koul and John Krasting are acknowledged for their helpful comments and suggestions on an internal review of the

manuscript. Advice from Mitch Bushuk on the remotely sensed sea ice data and suggestions from Sang-Ki Lee are also greatly appreciated.

ACR, EC, DK, JS, LR, SS, and SS were partly funded by grants from NOAA’s Climate Program Office. EC, KH, JS, FG and WC were

partly funded by NOAA’s Climate Portfolio. EC, KH, JS, and DK were partly funded by a grant from the Cooperative Institute for Modeling925

the Earth System. This study has been conducted using E.U. Copernicus Marine Service Information: https://doi.org/10.48670/moi-00021,

https://doi.org/10.48670/moi-00148.

51

https://doi.org/10.5194/gmd-2023-99
Preprint. Discussion started: 9 August 2023
c© Author(s) 2023. CC BY 4.0 License.



References

Accad, Y. and Pekeris, C. L.: Solution of the Tidal Equations for the M2 and S2 Tides in the World Oceans from a Knowledge of the Tidal

Potential Alone, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 290, 235–266,930

https://doi.org/10.1098/rsta.1978.0083, 1978.

Adcroft, A. and Campin, J.-M.: Rescaled Height Coordinates for Accurate Representation of Free-Surface Flows in Ocean Circulation

Models, Ocean Modelling, 7, 269–284, https://doi.org/10.1016/j.ocemod.2003.09.003, 2004.

Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O., Dunne, J. P., Griffies, S. M., Hallberg, R. W., Harrison,

M. J., Held, I., Jansen, M. F., John, J., Krasting, J. P., Langenhorst, A., Legg, S., Liang, Z., McHugh, C., Radhakrishnan, A., Reichl,935

B. G., Rosati, T., Samuels, B. L., Shao, A., Stouffer, R., Winton, M., Wittenberg, A. T., Xiang, B., Zadeh, N., and Zhang, R.: The GFDL

Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features, Journal of Advances in Modeling Earth Systems,

p. 2019MS001726, https://doi.org/10.1029/2019MS001726, 2019.

Alexander, M. and Scott, J.: The Influence of ENSO on Air-Sea Interaction in the Atlantic, Geophysical Research Letters, 29, 46–1–46–4,

https://doi.org/10.1029/2001GL014347, 2002.940

Alexander, M. A., Shin, S.-i., Scott, J. D., Curchitser, E., and Stock, C.: The Response of the Northwest Atlantic Ocean to Climate Change,

Journal of Climate, 33, 405–428, https://doi.org/10.1175/JCLI-D-19-0117.1, 2020.

Alfieri, L., Lorini, V., Hirpa, F. A., Harrigan, S., Zsoter, E., Prudhomme, C., and Salamon, P.: A Global Streamflow Reanalysis for 1980–2018,

Journal of Hydrology X, 6, 100 049, https://doi.org/10.1016/j.hydroa.2019.100049, 2020.

Amaya, D. J., Alexander, M. A., Scott, J. D., and Jacox, M. G.: An evaluation of high-resolution ocean reanalyses in the California current945

system, Progress in Oceanography, 210, 102 951, https://doi.org/https://doi.org/10.1016/j.pocean.2022.102951, 2023.

Andres, M.: On the Recent Destabilization of the Gulf Stream Path Downstream of Cape Hatteras, Geophysical Research Letters, 43, 9836–

9842, https://doi.org/10.1002/2016GL069966, 2016.

Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, in:

General Circulation Models of the Atmosphere, edited by Chang, J., vol. 17 of Methods in Computational Physics: Advances in Research950

and Applications, pp. 173–265, Elsevier, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977.

Baker, A. R. and Croot, P. L.: Atmospheric and Marine Controls on Aerosol Iron Solubility in Seawater, Marine Chemistry, 120, 4–13,

https://doi.org/10.1016/j.marchem.2008.09.003, 2010.

Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O’Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka,

S.-i., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini,955

C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L.,

Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S.,

Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen,

T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N.,

Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar,960

A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R.,

Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C.,

Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A Multi-Decade Record of High-Quality CO2data in Version 3 of the Surface Ocean

CO2 Atlas (SOCAT), Earth System Science Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.

52

https://doi.org/10.5194/gmd-2023-99
Preprint. Discussion started: 9 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Balch, W. M., Drapeau, D. T., Bowler, B. C., Record, N. R., Bates, N. R., Pinkham, S., Garley, R., and Mitchell, C.: Changing Hydrographic,965

Biogeochemical, and Acidification Properties in the Gulf of Maine as Measured by the Gulf of Maine North Atlantic Time Series, GNATS,

Between 1998 and 2018, Journal of Geophysical Research: Biogeosciences, 127, https://doi.org/10.1029/2022JG006790, 2022.

Baumann, H., Jones, L., Murray, C., Siedlecki, S., Alexander, M., and Cross, E.: Impaired Hatching Exacerbates the High CO2 Sensitivity of

Embryonic Sand Lance Ammodytes Dubius, Marine Ecology Progress Series, 687, 147–162, https://doi.org/10.3354/meps14010, 2022.

Bell, R. J., Richardson, D. E., Hare, J. A., Lynch, P. D., and Fratantoni, P. S.: Disentangling the Effects of Climate, Abundance, and Size on970

the Distribution of Marine Fish: An Example Based on Four Stocks from the Northeast US Shelf, ICES Journal of Marine Science, 72,

1311–1322, https://doi.org/10.1093/icesjms/fsu217, 2015.

Bennett, A. F. and Kloeden, P. E.: The Ill-Posedness of Open Ocean Models, Journal of Physical Oceanography, 11, 1027–1029,

https://doi.org/10.1175/1520-0485(1981)011<1027:TIPOOO>2.0.CO;2, 1981.

Bisagni, J. J. and Sano, M. H.: Satellite Observations of Sea Surface Temperature Variability on Southern Georges Bank, Continental Shelf975

Research, 13, 1045–1064, https://doi.org/10.1016/0278-4343(93)90040-5, 1993.

Bodner, A. S., Fox-Kemper, B., Johnson, L., Roekel, L. P. V., McWilliams, J. C., Sullivan, P. P., Hall, P. S., and Dong, J.: Modifying the

Mixed Layer Eddy Parameterization to Include Frontogenesis Arrest by Boundary Layer Turbulence, Journal of Physical Oceanography,

53, 323–339, https://doi.org/10.1175/JPO-D-21-0297.1, 2023.

Boivin-Rioux, A., Starr, M., Chassé, J., Scarratt, M., Perrie, W., Long, Z., and Lavoie, D.: Harmful Algae and Climate Change on the980

Canadian East Coast: Exploring Occurrence Predictions of Dinophysis Acuminata, D. Norvegica, and Pseudo-nitzschia Seriata, Harmful

Algae, 112, 102 183, https://doi.org/10.1016/j.hal.2022.102183, 2022.

Boyer, T. P., Garcia, H. E., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Reagan, J. R., Weathers, K. A., Baranova, O. K., Seidov, D.,

and Smolyar, I. V.: World Ocean Atlas 2018, https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18, 2019.

Bryan, F. O., Hecht, M. W., and Smith, R. D.: Resolution Convergence and Sensitivity Studies with North Atlantic Circulation Models. Part985

I: The Western Boundary Current System, Ocean Modelling, 16, 141–159, https://doi.org/10.1016/j.ocemod.2006.08.005, 2007.

Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed Fingerprint of a Weakening Atlantic Ocean Overturning

Circulation, Nature, 556, 191–196, https://doi.org/10.1038/s41586-018-0006-5, 2018.

Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao,

P., Guo, X., Gundersen, K., Dai, M., and Gong, G.-C.: Acidification of Subsurface Coastal Waters Enhanced by Eutrophication, Nature990

Geoscience, 4, 766–770, https://doi.org/10.1038/ngeo1297, 2011.

Carter, B. R., Bittig, H. C., Fassbender, A. J., Sharp, J. D., Takeshita, Y., Xu, Y.-Y., Álvarez, M., Wanninkhof, R., Feely, R. A., and Barbero,

L.: New and Updated Global Empirical Seawater Property Estimation Routines, Limnology and Oceanography: Methods, 19, 785–809,

https://doi.org/10.1002/lom3.10461, 2021.

Castillo-Trujillo, A. C., Kwon, Y.-O., Fratantoni, P., Chen, K., Hyodae-Seo, Alexander, M. A., and Saba, V. S.: An evaluation of eight global995

ocean reanalyses for the Northeast U.S. continental shelf, Submitted to Journal of Geophysical Research: Oceans, 2022.

Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J.: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS

Passive Microwave Data, Version 1, https://doi.org/10.5067/8GQ8LZQVL0VL, 1996.

Chassignet, E. P. and Garaffo, Z. D.: Viscosity Parameterization and the Gulf Stream Separation, in: From stirring to mixing in a stratified

ocean: Proceedings of the 12th ‘Aha Huliko‘a Hawaiian Winter Workshop, pp. 37–41, University of Hawai‘i at Mānoa, 2001.1000
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